1、计 量 经 济 课 程 论 文 ----由弹性价格货币模型论中国汇率和利率的联动性 内容摘要 本文的初衷是想通过计量经济学知识检验弹性价格货币模型,运用本学期所学到的计量经济学知识。但随着探讨的深入,我们不断地发现问题并试图找出修正问题的方法,对模型进行了不断的调整。最后我们得出结论,由于我国目前国情特殊等种种原因该模型并不适用于中国这种汇率并分析了背后的原因。 在整个论文的完成中,我们发现我们学到的东西远比我们开始时预想得多。除了学会了运用计量经济学知识解决实际问题我们还获得了很多启示,也总结了许多经验,于是我们在写最后的报告时附加了我们的体会,希望可以和大家分享。 关键
2、词: 弹性价格货币模型,汇率,实际国民收入水平,利率水平,货币供给水平 导论 汇率决定理论是西方外汇理论的核心,也一直是国际经济学中最为活跃的领域之一。随着世界经济的变化和国际货币体制的变迁,汇率决定理论也在不断地发展 货币模型是西方汇率决定理论中资产市场分析法的一个重要的分支。其中资产市场分析法是从20世纪七十年代中期开始迅速成长起来的汇率决定理论。货币法(Monetary Approach)和资产组合平衡法(Portfolio Balance Approach)是资产市场法的两个主要的分支。货币法中也有两种分析模型,一是弹性价格货币模型(Flexible-Price Mon
3、etary Model),另一个是粘性价格货币模型(Sticky-Price Monetary Model)。我们检验的重点就是弹性价格货币模型。 经济解释 一、弹性价格货币模型 1.弹性价格货币模型的基本思想 弹性价格货币模型是现代汇率理论中最早建立、也是最基础的汇率决定模型。其主要代表人物有弗兰克尔(J·Frenkel)、穆莎(M·Mussa)、考霍(P·Kouri)、比尔森(J·Bilson)等人。它是在1975年瑞典斯德哥尔摩附近召开的关于“浮动汇率与稳定政策”的国际研讨会上被提出来的。 弹性货币法的一个基本思想:汇率是两国货币的相对价格,而不是两国商品的相对价格,因
4、此汇率水平应主要由货币市场的供求状况决定。 2.弹性货币法的论述 重要假设: (1) 稳定的货币需求方程,即货币需求同某些经济变量存在着稳定的关系; (2) 购买力平价持续有效。 S=α(y*-y)+β(i-i*)+(Ms-Ms*) 从模型中我们可以看出,本国与外国之间实际国民收入水平、利率水平以及货币供给水平通过对各自物价水平的影响而决定了汇率水平。本国利率上升会降低货币需求,在原有的价格水平与货币供给水平上,这会造成支出的增加、物价的上升,从而通过购买力平价关系造成本国货币的贬值 相关数据收集 在中经网中我们找到了1985年到2002年美国,中国各自的官方
5、汇率,实际国民收入,实际利率,货币供给M1,M2。现在的问题是M1,M2都是衡量货币供给的指标,应当选哪个?我们选择了M2.因为在Frederic S. Mishkin(米什金)的《The Economics of Money, Banking, and Financial Market》书我们找到了m1,m2的定义,而且书中明确指出,M2由于其速率远比M1稳定,因而在衡量货币供给方面比M1更好。 在P57给出了M1,M2的定义: M1=Currency +Traveler’s checks +Demand deposits + Other checkable deposits M2
6、 M1 + Small denomination time deposits + savings deposits and money market deposit accounts + Money market mutual fund shares 作者在p560写道:”The relative stability of M2 velocity suggests that money demand functions in which the money supply is defined as M2 might performed substantially better than
7、 those in which the money supply is defined as M1.” 原始数据如下: 年 度 中国汇率S 美国国民收入Y* 中国国民收入Y 中国实际利率I 美国实际利率I* 美国M2* 中国M2 1985 2.94 55985.65 12133 -2.02 6.52 28010.48 4874.9 1986 3.45 57264.02 13413.65 3.17 5.97 30980.83 6348.6 1987 3.72 59578.44 15097.47 2.72 5.01 31939.3
8、 7957.4 1988 3.72 62681.01 16958.06 -2.79 5.7 33946.54 9602.1 1989 3.77 64121.72 17739.94 2.33 6.79 35906.38 11393.1 1990 4.78 64915.73 18598.37 3.49 5.87 37674.36 14681.9 1991 5.32 65061.65 20405.99 1.79 4.65 38900.36 18598.9 1992 5.51 66602.99 23502.67 0.68 3.
9、72 39547.64 24327.3 1993 5.76 68257.01 26798.67 -3.12 3.52 40137.58 35680.8 1994 8.62 71056.98 30525.25 -7.44 4.96 40153.51 46920.3 1995 8.35 73322 33496.5 -0.99 6.51 42418.03 60743.5 1996 8.31 75932.52 36830.48 3.93 6.2 45010.02 76095.3 1997 8.29 79473.88 40400
10、25 7.76 6.36 47968.64 91867.81 1998 8.28 83736.65 43205.3 9 7.02 52809.77 105560.11 1999 8.28 87407.58 46178.05 8.22 6.45 57122.22 121042.06 2000 8.28 91182.21 49249.8 4.86 6.98 61088.86 135960.23 2001 8.28 91502.37 52826.99 4.61 4.44 69677.66 156411.93 2002 8.
11、28 93332.11 57512.11 5.62 3.47 72688.63 186790.54 由于模型中s , y, I Ms是指汇率,实际国民收入,货币供给量的自然对数值,于是作如下数据处理:( s=lnS, y=lnY, i=I, m=lnM) 年 度 s y*-y i-i* m-m* 1985 1.078409581 2.607576 -0.0854 -2.82689 1986 1.238374231 2.689774 -0.028 -2.82351 1987 1.313723668 2.68649 -0.0
12、229 -2.70346 1988 1.313723668 2.621039 -0.0849 -2.57653 1989 1.327075001 2.61204 -0.0446 -2.47498 1990 1.564440547 2.814457 -0.0238 -2.5068 1991 1.671473303 2.83098 -0.0286 -2.40937 1992 1.706564623 2.7482 -0.0304 -2.19247 1993 1.750937475 2.685865 -0.0664 -1.86864 19
13、94 2.154085085 2.999013 -0.124 -1.99834 1995 2.122261539 2.905681 -0.075 -1.76317 1996 2.117459609 2.840979 -0.0227 -1.59236 1997 2.115049969 2.791642 0.014 -1.46525 1998 2.113842968 2.775557 0.0198 -1.42126 1999 2.113842968 2.75192 0.0177 -1.3629 2000 2.113842968 2.7
14、29797 -0.0212 -1.31381 2001 2.113842968 2.663186 0.0017 -1.30523 2002 2.113842968 2.598012 0.0215 -1.17004 平稳性检验: 单位根检验: y一阶差分,滞后0 期 ADF Test Statistic -4.485774 1% Critical Value* -4.6712 5% Critical Value -3.7347 10% Critical Value -3.3086 *MacK
15、innon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(Y,2) Method: Least Squares Date: 06/14/05 Time: 09:35 Sample(adjusted): 1987 2002 Included observations: 16 after adjusting endpoints Variable C
16、oefficient Std. Error t-Statistic Prob. D(Y(-1)) -1.211682 0.270117 -4.485774 0.0006 C 0.056801 0.065830 0.862841 0.4039 @TREND(1985) -0.006505 0.006251 -1.040761 0.3170 R-squared 0.607580 Mean dependent var -0.009211 Adjusted R-squared 0.547208 S.D. dependent var
17、 0.165921 S.E. of regression 0.111648 Akaike info criterion -1.379568 Sum squared resid 0.162049 Schwarz criterion -1.234707 Log likelihood 14.03654 F-statistic 10.06389 M的单位根检验: 滞后期为0,2阶差分 ADF Test Statistic -6.098875 1% Critical Value* -4.7315 5% Critical
18、 Value -3.7611 10% Critical Value -3.3228 *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(M,3) Method: Least Squares Date: 06/14/05 Time: 09:36 Sample(adjusted): 1988 2002 Included
19、observations: 15 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob . I的单位根检验 滞后期为1,2阶差分 ADF Test Statistic -4.409217 1% Critical Value* -4.8025 5% Critical Value -3.7921 10% Critical Value -3.3393 *MacKinnon crit
20、ical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(I,3) Method: Least Squares Date: 06/14/05 Time: 09:29 Sample(adjusted): 1989 2002 Included observations: 14 after adjusting endpoints Variable Coefficient
21、 Std. Error t-Statistic Prob. E一阶差分滞后1期 ADF Test Statistic -3.415388 1% Critical Value* -4.7315 5% Critical Value -3.7611 10% Critical Value -3.3228 *MacKinnon critical values for rejection of hypothesis of a unit root.
22、 Augmented Dickey-Fuller Test Equation Dependent Variable: D(E,2) Method: Least Squares Date: 06/14/05 Time: 09:13 Sample(adjusted): 1988 2002 Included observations: 15 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. D(E(-1)) -1.480432 0.433459 -3.415
23、388 0.0058 D(E(-1),2) 0.297192 0.285576 1.040677 0.3204 C 0.204362 0.098391 2.077042 0.0620 @TREND(1985) -0.011981 0.007830 -1.530147 0.1542 R-squared 0.610438 Mean dependent var -0.005023 Adjusted R-squared 0.504194 S.D. dependent var 0.168304 S.E. of regression 0.
24、118509 Akaike info criterion -1.204485 Sum squared resid 0.154487 Schwarz criterion -1.015671 Log likelihood 13.03364 F-statistic 5.745612 Durbin-Watson stat 2.071058 Prob(F-statistic) 0.012930 因果关系检验: E 与m2 互为因果 Pairwise Granger Causality Tests Date: 06/14/05 T
25、ime: 09:23 Sample: 1985 2002 Lags: 2 Null Hypothesis: Obs F-Statistic Probability M does not Granger Cause E 16 14.0385 0.00094 E does not Granger Cause M 6.99392 0.01097 E与 y:互不为因果 Pairwise Granger Causality Tests Date: 06/14/05 Time: 09:28 Sample: 1985 2002 Lags: 1
26、 Null Hypothesis: Obs F-Statistic Probability Y does not Granger Cause E 17 0.93813 0.34920 E does not Granger Cause Y 0.09072 0.76769 E与 I 互不为因果 Pairwise Granger Causality Tests Date: 06/15/05 Time: 11:50 Sample: 1985 2002 Lags: 3 Null Hypothesis: Obs F-Statistic
27、Probability I does not Granger Cause E 15 0.44195 0.72943 E does not Granger Cause I 0.83104 0.51325 参数的估计 最小二乘回归得 Dependent Variable: E Method: Least Squares Date: 05/18/04 Time: 21:02 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Stat
28、istic Prob. C -0.617765 0.246003 -2.511204 0.0249 Y 1.290026 0.085334 15.11731 0.0000 I -0.142262 0.263086 -0.540744 0.5972 M 0.575430 0.018366 31.33085 0.0000 R-squared 0.993250 Mean dependent var 1.780155 Adjusted R-squared 0.991804 S.D. dependent var 0.38581
29、6 S.E. of regression 0.034928 Akaike info criterion -3.677909 Sum squared resid 0.017080 Schwarz criterion -3.480048 Log likelihood 37.10118 F-statistic 686.7379 Durbin-Watson stat 1.371224 Prob(F-statistic) 0.000000 线性关系显著(由F统计量得知), R2=0.993250说明拟合优度很好, 但是由I的T检验中t=
30、0.540744,其绝对值小于2,可以看出,I 作为解释变量不是很合理 经济意义检验: 回归所得的I的系数符号与经济意义不符 ,其他变量经济意义符合 计量经济学检验 1. 重共线性检验 相关系数矩阵: 的确存在多重线性,并且I的t统计量不显著 I Y M I 1.000000 -0.238763 0.526896 Y -0.238763 1.000000 0.176456 M 0.526896 0.176456 1.000000 逐步回归得: Dependent Variable: E Method: Leas
31、t Squares Date: 05/18/04 Time: 13:08 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C -3.269684 2.051116 -1.594100 0.1305 Y 1.841804 0.747527 2.463862 0.0255 R-squared 0.275054 Mean dependent var 1.7
32、80155 Adjusted R-squared 0.229745 S.D. dependent var 0.385816 S.E. of regression 0.338608 Akaike info criterion 0.776491 Sum squared resid 1.834484 Schwarz criterion 0.875421 Log likelihood -4.988419 F-statistic 6.070615 Durbin-Watson stat 0.115207 Prob(F-statistic) 0.025456 Dep
33、endent Variable: E Method: Least Squares Date: 05/18/04 Time: 13:08 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C 1.887803 0.112636 16.76017 0.0000 I 3.322453 2.184643 1.520822 0.1478 R-squared 0
34、126299 Mean dependent var 1.780155 Adjusted R-squared 0.071693 S.D. dependent var 0.385816 S.E. of regression 0.371728 Akaike info criterion 0.963132 Sum squared resid 2.210912 Schwarz criterion 1.062063 Log likelihood -6.668192 F-statistic 2.312898 Durbin-Wat
35、son stat 0.271065 Prob(F-statistic) 0.147820 Dependent Variable: E Method: Least Squares Date: 05/18/04 Time: 13:08 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C 2.998507 0.128513 23.33228 0
36、0000 M 0.613007 0.062182 9.858300 0.0000 R-squared 0.858640 Mean dependent var 1.780155 Adjusted R-squared 0.849805 S.D. dependent var 0.385816 S.E. of regression 0.149523 Akaike info criterion -0.858295 Sum squared resid 0.357714 Schwarz criterion -0.
37、759365 Log likelihood 9.724656 F-statistic 97.18608 Durbin-Watson stat 1.194219 Prob(F-statistic) 0.000000 选M为第一个解释变量 Dependent Variable: E Method: Least Squares Date: 05/18/04 Time: 13:20 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Er
38、ror t-Statistic Prob. C -0.675075 0.216703 -3.115204 0.0071 M 0.569518 0.014405 39.53654 0.0000 Y 1.308324 0.076469 17.10928 0.0000 R-squared 0.993109 Mean dependent var 1.780155 Adjusted R-squared 0.992191 S.D. dependent var 0.385816 S.E. of regression 0.034095
39、 Akaike info criterion -3.768349 Sum squared resid 0.017437 Schwarz criterion -3.619953 Log likelihood 36.91514 F-statistic 1080.952 Durbin-Watson stat 1.286969 Prob(F-statistic) 0.000000 Dependent Variable: E Method: Least Squares Date: 05/18/04 Time: 13:20 Sa
40、mple: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C 3.070207 0.127327 24.11284 0.0000 M 0.677111 0.068721 9.853034 0.0000 I -1.719333 0.971156 -1.770398 0.0970 R-squared 0.883072 Mean dependent var 1.780155 Adjusted R-squared
41、 0.867482 S.D. dependent var 0.385816 S.E. of regression 0.140449 Akaike info criterion -0.936939 Sum squared resid 0.295887 Schwarz criterion -0.788544 Log likelihood 11.43246 F-statistic 56.64223 Durbin-Watson stat 1.499001 Prob(F-statistic) 0.000000 由于调整
42、后可决系数最大的为Y,逐步回归可以终止,最后的回归模型为: Dependent Variable: E Method: Least Squares Date: 05/18/04 Time: 13:20 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C -0.675075 0.216703 -3.115204 0.0071 M 0.569518 0.014405 39.53654 0.0000 Y 1.3
43、08324 0.076469 17.10928 0.0000 R-squared 0.993109 Mean dependent var 1.780155 Adjusted R-squared 0.992191 S.D. dependent var 0.385816 S.E. of regression 0.034095 Akaike info criterion -3.768349 Sum squared resid 0.017437 Schwarz criterion -3.619953 Log likelihood 36.91514 F-sta
44、tistic 1080.952 Durbin-Watson stat 1.286969 Prob(F-statistic) 0.000000 可以看出,只有Y和M对模型的影响显著,而I对模型没有什么影响。 2.异方差检验 做ARCH(P=3)检验: ARCH Test: F-statistic 5.461801 Probability 0.015183 Obs*R-squared 8.974892 Probability 0.029627 Test Equation: Dependent Variable
45、 RESID^2 Method: Least Squares Date: 06/13/05 Time: 20:26 Sample(adjusted): 1988 2002 Included observations: 15 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 0.000154 0.000318 0.482194 0.6391 RESID^2(-1) 1.038941 0.329839 3.149842 0.0092 RESID
46、^2(-2) 0.100379 0.423071 0.237263 0.8168 RESID^2(-3) -0.074375 0.227784 -0.326517 0.7502 R-squared 0.598326 Mean dependent var 0.000925 Adjusted R-squared 0.488779 S.D. dependent var 0.000874 S.E. of regression 0.000625 Akaike info criterion -11.69368 Sum squared re
47、sid 4.30E-06 Schwarz criterion -11.50487 Log likelihood 91.70261 F-statistic 5.461801 Durbin-Watson stat 1.912115 Prob(F-statistic) 0.015183 Obs*R-squared 对应的P值是0.029627 〈 0.03初步判定没有异方差存在 用WHITE检验: White Heteroskedasticity Test: F-statistic 2.788935 Probability 0.
48、066926 Obs*R-squared 10.86065 Probability 0.092780 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/13/05 Time: 20:46 Sample: 1985 2002 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. C 0.093689 0.199497 0.4696
49、27 0.6478 M 0.006867 0.005187 1.323964 0.2124 M^2 0.001506 0.001249 1.205570 0.2533 I 0.002166 0.014963 0.144748 0.8875 I^2 0.106044 0.167649 0.632536 0.5400 Y -0.058697 0.145379 -0.403752 0.6941 Y^2 0.009988 0.026364 0.378865 0.7120 R-squared 0.603369 Mean depe
50、ndent var 0.000949 Adjusted R-squared 0.387025 S.D. dependent var 0.000952 S.E. of regression 0.000746 Akaike info criterion -11.27944 Sum squared resid 6.12E-06 Schwarz criterion -10.93318 Log likelihood 108.5149 F-statistic 2.788935 Durbin-Watson stat 1.248839






