1、高中物理牛顿运动定律重点知识点大全1单选题1、如图所示,所有质点同时从O点沿不同倾角的光滑斜面无初速滑下,若将各质点在斜面上运动时间相同的点连成一线,则连线的性质为()A圆弧B抛物线C水平线D斜线答案:A解析:设轨道与竖直方向的夹角为,根据牛顿第二定律,物体的加速度a = mgcosm = gcos所有小物体在相等时间内的位移x=12at2=12gcost2=12gt2cos由图可知12gt2是竖直方向直径的长度,通过几何关系知,某一时刻这些小物体所在位置构成的面是圆弧。故选A。2、如图所示,在某建筑地,工人甲将质量为m的工件利用固定在支架上的光滑定滑轮沿竖直方向提升到一定高度后,甲一直站在乙
2、的身后拉紧绳索,绳索与水平方向的夹角为;工人乙通过一始终保持水平的轻绳将工件缓慢拉到楼顶。己知甲、乙的质量分别为M甲、M乙,重力加速度大小为g,甲,乙始终处于静止状态,下列说法正确的是()A乙将工件拉到楼顶过程,甲受到的摩擦力不变B乙将工件拉到楼顶过程,楼顶对乙的摩擦力逐渐减小C工件匀速上升时。楼顶对甲的支持力为M甲-mgD工件以加速度a匀加速上升时楼顶对甲的摩擦力为m(g+a)cos答案:D解析:A乙将工件拉到楼顶过程,设两绳结点上方绳索与竖直方向夹角为,对结点由平衡条件可得甲拉的绳索上的拉力为T1=mgcos由平衡条件可得,甲受到的摩擦力为f1=T1cos由于变大,可知T1变大,f1变大,
3、A错误;B乙将工件拉到楼顶过程,乙对轻绳的拉力为T2=mgtan由平衡条件可得,乙受到的摩擦力为f2=T2由于变大,可知T2变大,f2变大,B错误;C工件匀速上升时,绳上拉力T大小等于工件的重力mg,在竖直方向对甲由平衡条件可得N+Tsin=M甲g解得楼顶对甲的支持力为N=M甲g-Tsin=M甲g-mgsinC错误;D工件以加速度a匀加速上升时,对工件由牛顿第二定律可得T-mg=ma在水平方向对甲由平衡条件可得f=Tcos联立解得楼顶对甲的摩擦力为f=m(g+a)cosD正确。故选D。3、关于曲线运动,下列说法中正确的是()A物体作曲线运动时,它的速度可能保持不变B作曲线运动的物体,所受合外力
4、方向与速度方向肯定不在一条直线上C物体只有受到一个方向不断改变的力的作用,才可能作曲线运动D作曲线运动的物体,加速度方向与所受合外力方向可能不一样答案:B解析:A曲线运动的物体,速度方向一直在变,所以曲线运动速度不可能保持不变,故A错误;B做曲线运动的物体,所受合外力方向与速度方向一定不在一条直线上,故B正确;C只要物体的合外力方向与速度方向不在一条直线上,物体就做曲线运动,力的方向不一定改变。例如平抛运动,故C错误;D由牛顿第二定律可知,加速度的方向必须与合外力方向相同,故D错误。故选B。4、如图所示,有A、B两物体,mA2mB,用细绳连接后放在光滑的斜面上,在它们下滑的过程中()A它们的加
5、速度agsinB它们的加速度a mgcos可知,滑块不可能静止在斜面上,B错误;C下滑过程,由牛顿第二定律得mgsinmgcos = ma2代入数据解得a2=2m/s2滑块向上运动到最高点的时间t1=0-(-v0)a1=1010=1s向下的运动x=12a2t22所以t2=5s滑块恰好又回到出发点的总时间t=t1+t2=(1+5)sC错误;D选取向下为正方向,t = 3s时,滑块的速度为v3 = v0 + a1t1 + a2t2 = 10 + 10 1 + 2 2 m/s = 4m/sD正确。故选D。8、图示为河北某游乐园中的一个游乐项目“大摆锤”,该项目会让游客体会到超重与失重带来的刺激。以下
6、关于该项目的说法正确的是()A当摆锤由最高点向最低点摆动时,游客会体会到失重B当摆锤由最高点向最低点摆动时,游客会体会到超重C当摆锤摆动到最低点时,游客会体会到明显的超重D当摆锤摆动到最低点时,游客会体会到完全失重答案:C解析:当摆锤由最高点向最低点摆动时,先具有向下的加速度分量,后有向上的加速度分量,即游客先体会到失重后体会到超重。当摆锤摆动到最低点时,具有方向向上的最大加速度,此时游客体会到明显的超重。故选C。多选题9、如图所示,MN和PQ是电阻不计的平行金属导轨,其间距为L,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接。右端接一个阻值为R的定值电阻。平直部分导轨左边区域有宽度为d、方向竖
7、直向上、磁感应强度大小为B的匀强磁场。质量为m、电阻也为R的金属棒从高度为h处静止释放,到达磁场右边界处恰好停止。已知金属棒与平直部分导轨间的动摩擦因数为,金属棒与导轨间接触良好。则金属棒穿过磁场区域的过程中()A金属棒的最大电压为12BL2ghB金属在磁场中的运动时间为2dghC克服安培力所做的功为mghD右端的电阻R产生的焦耳热为12(mghmgd)答案:AD解析:A金属棒在下滑过程中,由机械能守恒定律得mgh=12mv2则得金属棒到达水平面时的速度v=2gh金属棒进入磁场后受到向左的安培力和摩擦力而做减速运动,则金属棒刚到达水平面时的速度最大,所以最大感应电动势为E=BLv金属棒的最大电
8、压为U=12E=12BL2ghA正确;B金属棒在磁场中运动时,取向右为正方向,根据牛顿第二定律得-mg-B2L2v2R=ma=mvt即得-mgt-B2L2v2Rt=mv两边求和得(-mgt-B2L2v2Rt)=mv则得-mgt-B2L2d2R=0-mv解得金属在磁场中的运动时间为t=m2gh-B2L2d2RmgB错误;C金属棒在整个运动过程中,由动能定理得mgh-WB-mgd=0-0则克服安培力做功WB=mgh-mgdC错误;D克服安培力做功转化为焦耳热,电阻与导体棒电阻相等,通过它们的电流相等,则金属棒产生的焦耳热QR=12Q=12WB=12(mgh-mgd)D正确。故选AD。10、科学家关
9、于物体运动的研究对树立正确的自然观具有重要作用。下列说法符合历史事实的是()A亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质答案:BCD解析:A亚里士多德认为物体的运动需要力来维持,选项A错误;BCD牛顿根据选项B中伽利略的正确观点和选项C中笛卡儿的正确观点,得出了选项D的正确观点,选项B、C、D正确。故选BCD。11
10、、如图所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F拉b物块,使a、b一起无相对滑动地向左加速运动,在加速运动阶段()Aa对b的压力不变Ba对b的压力变大Ca、b物块间的摩擦力变小Da、b物块间的摩擦力变大答案:BC解析:AB对a受力分析,受到重力、支持力、摩擦力以及洛伦兹力,其中支持力等于重力加洛伦兹力,即Nba=mag+qvB由于加速,所以洛伦兹力变大,故支持力变大,由牛顿第三定律知,a对b的压力变大。A错误,B正确;CD将a、b当成一个整体受力分析,得到F-f地=ma+mba其中f地
11、=ma+mbg+qvB所以整体的加速度在减小。而对于a,a和b间的摩擦力为静摩擦力,则fba=maa加速度在减小,所以a、b物块间的摩擦力减小。C正确,D错误。故选BC。12、受水平外力F作用的物体,在粗糙水平面上做直线运动,其v-t图线如图所示,则()A在t1时刻,外力F为零B在0t1内,外力F大小不断减小C在t1t2内,外力F大小可能不断减小D在t1t2内,外力F大小可能先减小后增大答案:BCD解析:Av-t图线的斜率表示加速度,在t1时刻图线斜率为零,即加速度为零,说明外力F等于摩擦力,外力F不为零,A错误;B在0t1时间内,斜率逐渐减小,加速度减小,根据牛顿第二定律得F-mg=ma说明
12、外力F大小不断减小,但仍然大于摩擦力,B正确;CD在t1t2时间内,加速度方向与运动方向相反且加速度逐渐增大,说明向后的合力一直增大,外力F可能小于摩擦力(方向不变),且一直减小,也可能减小到零后反向增大,CD正确。故选BCD。13、如图甲所示,一质量为m1的薄木板(厚度不计)静止在光滑水平地面上,现有一质量为m2的滑块以一定的水平初速度v0,从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时间变化的情况如图乙所示,根据图象可知以下判断正确的是()A滑块始终与木板存在相对运动B滑块未能滑出木板C滑块的质量m2大于木板的质量m1D在t1时刻,滑块从木板上滑出答案:ACD解析:滑块以水
13、平初速度v0滑上木板,滑块减速,木板加速,滑块和木板的加速度的大小分别为a2m2gm2ga1m2gm1由题图乙可知,滑块的速度一直大于木板的速度,即两者之间始终存在相对运动,在t1时刻,滑块滑出木板,各自做匀速直线运动。由题图乙分析可知,图像的斜率等于加速度,则a2a1即gm2gm1则m1m2故选ACD。14、在光滑的水平面上,质量为m的小滑块停放在质量为M、长度为L的静止的长木板的最右端,滑块和木板之间的动摩擦因数为。现用一个大小为F的恒力作用在M上,当小滑块滑到木板的最左端时,滑块和木板的速度大小分别为v1、v2,滑块和木板相对于地面的位移大小分别为s1、s2。下列关系式正确的是()Amg
14、s1=12mv12BFs2-mgs2=12Mv22CmgL=12mv12DFs2-mgs2+mgs1=12Mv22+12mv12答案:ABD解析:AC滑块在摩擦力作用下前进的距离为s1,故对于滑块mgs1=12mv12故A正确,C错误;B木板前进的距离为s2,对于木板Fs2-mgs2=12Mv22故B正确;D由以上两式得Fs2-mgs2+mgs1=12Mv22+12mv12故D正确。故选ABD。15、如图所示,电梯的顶部挂有一个弹簧测力计,其下端挂了一个重物,电梯匀速直线运动时测力计的示数为10N。在某时刻测力计的示数变为8N,关于电梯的运动,以下说法正确的是(g取10m/s2)()A电梯可能
15、向上加速运动,加速度大小为2m/s2B电梯可能向下加速运动,加速度大小为2m/s2C电梯可能向上减速运动,加速度大小为2m/s2D电梯可能向下减速运动,加速度大小为2m/s2答案:BC解析:电梯匀速直线运动时,弹簧秤的示数为10N,知重物的重力等于10N。对重物有mg-F=ma解得a=2m/s2方向竖直向下,则电梯的加速度大小为2m/s2,方向竖直向下。电梯可能向下做加速运动,也可能向上做减速运动。故BC正确,AD错误。故选BC。16、给水平面上物体一个10m/s的水平初速度,由于物体与地面之间摩擦,物体在地面上做匀减速直线运动,物体运动5s停下来,已知物体的质量为1kg,重力加速度为g取10
16、m/s2,不计空气阻力,则下列分析正确的是()A物体运动的加速度大小为2m/s2B物体与地面之间动摩擦因数为0.2C物体与地面之间的滑动摩擦力大小为10ND物体运动的加速度大小为5m/s2答案:AB解析:AD由运动学公式可得,物体运动的加速度大小为a=vt=2m/s2A正确,D错误;BC由牛顿第二定律可得f=mg=ma解得f=2N,=0.2B正确,C错误。故选AB。填空题17、质量为2kg的物体,静止放于水平面上,现在物体上施一水平力F,使物体开始沿水平面运动,运动10s时,将水平力撤掉,若物体运动的速度图象如图所示,则水平力F_N,物体与水平面间的动摩擦因数_。(g取10m/s2)答案: 3
17、 0.05解析:12物体在力F作用下加速运动的加速度a1=1010m/s2=1m/s2根据牛顿第二定律可知F-mg=ma1撤去F后,加速度大小a2=1020m/s2=0.5m/s2根据牛顿第二定律可知mg=ma2联立解得F=3N=0.0518、方法一:利用牛顿第二定律先测量物体做自由落体运动的加速度g,再用天平测量物体的_,利用牛顿第二定律可得G_。答案: 质量m mg解析:略19、(1)伽利略被称为现代物理之父,他曾两次利用斜面实验探究问题,下列说法正确的是( )A伽利略利用甲图斜面实验,通过计算直接证明了自由落体运动是匀变速直线运动B伽利略利用甲图斜面实验,通过计算并进行合理外推,间接证明
18、了自由落体运动是匀变速直线运动C伽利略利用乙图斜面实验,说明了力是维持物体运动的原因D伽利略利用乙图斜面实验,说明了力不是维持物体运动的原因(2)某同学利用如图所示的装置探究“小车速度随时间的变化规律”,打点计时器每隔0.02s打一个点。实验中发现所得纸带的点间距过密,若利用该纸带分析小车运动情况,下列做法可行的是( )A直接研究纸带上的点,无需取计数点B只研究纸带后端几个间距较大的点所在区域C每隔4个点取一个计数点,计数点时间间隔为0.1 sD每隔4个点取一个计数点,计数点时间间隔为0.08 s答案: BD C解析:(1)1AB伽利略利用甲图斜面实验,通过计算并进行合理外推,间接证明了自由落
19、体运动是匀变速直线运动,A错误,B正确;CD伽利略利用乙图斜面实验,说明了力不是维持物体运动的原因,C错误,D正确。故选BD。(2)2实验中发现所得纸带的点间距过密,测量误差较大,应每隔4个点取一个计数点,使计数点时间间隔为0.1s,方便测量、计算,减小误差,ABD错误,C正确。故选C。20、物理学中引入合力、分力等概念,从科学方法来说是属于_方法,探究牛顿第二定律这一规律时采用的科学方法属于_方法。答案: 等效替代 控制变量解析:1合力与分力的作用效果相同,从科学方法来说是属于等效替代方法;2探究牛顿第二定律这一规律时采用的科学方法属于控制变量方法。21、一个重500N的同学站在电梯的地板上
20、,从底层出发到某层楼停止,测得电梯竖直上升的过程中速度v和时间t的数据如下表所示:t/s0123456789v/ms-102.04.05.05.05.05.05.04.03.0电梯的启动和制动过程可以看作是匀变速直线运动,取g=10m/s2,8s时地板对这位同学的支持力为_N,则电梯上升的高度是_m。答案: 450 41.25解析:1由题可知,一个同学重500N,则质量m=50kg,由表格知,8s-9s电梯减速上升,则加速度的大小为a2=4-31m/s2=1m/s2根据牛顿第二定律有mg-N=ma2解得N=450N2由表格知,0-1s电梯加速上升,则加速度大小为a1=2m/s2,则电梯加速到v
21、1=5m/s的时间为t1=v1a1=2.5s故加速位移为h1=12a1t12=6.25m设从v1=5m/s减到v2=4m/s的时间为t,则有t=v1-v2a2=1s说明电梯是从t=7s开始减速的,故电梯匀速的时间t2=7s-t1=4.5s匀速的位移为h2=v1t2=22.5m匀减速到零的位移为h3=v122a1=12.5m则电梯上升的高度h=h1+h2+h3=41.25m22、两个物体之间的作用总是_的,物体间相互作用的这一对力,通常叫作_和_。答案: 相互 作用力 反作用力解析:略23、两类基本问题(1)从受力确定运动情况如果已知物体的受力情况,可以由牛顿第二定律求出物体的_,再通过运动学的
22、规律确定物体的_情况。(2)从运动情况确定受力如果已知物体的运动情况,根据运动学规律求出物体的_,结合受力分析,再根据牛顿第二定律求出_。(3)如图所示,一质量为8 kg的物体静止在粗糙的水平地面上,物体与地面间的动摩擦因数为0.2,用一水平拉力F=20 N拉物体,使其由A点开始运动,经过8 s后撤去拉力F,再经过一段时间物体到达B点停止。则:(g取10 m/s2)a.在拉力F作用下物体运动的加速度大小为_ m/s2;b.撤去拉力F瞬间物体的速度大小v=_ m/s;c.撤去拉力F后物体运动的距离x=_ m。答案: 加速度 运动 加速度 合外力 0.5 4 4解析:(1)1 如果已知物体的受力情
23、况,可以求出合力,根据牛顿第二定律,可以求出物体的加速度。2结合运动学规律公式,可以求出物体的运动情况。(2)3 如果已知物体的运动情况,根据运动学规律求出物体的加速度。4结合牛顿第二定律,可以求出物体受到的合外力。(3)5受力分析得F-mg=ma解得a=0.5m/s26根据速度公式得v=at=4m/s7 撤去拉力F后,受力分析得-mg=ma解得a=-2m/s2物体运动的位移为x=-v22a=4m24、一对作用力和反作用力_是同一种类的力,而一对相互平衡的力_是同一种类的力。(均选填“一定”或“不一定”)答案: 一定 不一定解析:略解答题25、如图所示,水平传动带以v0=4m/s的速率顺时针匀
24、速运转,传动带左、右两端的距离为8m,把一可以看作质点的小物块轻放在传动带左端,物块与传动带之间的动摩擦因数为=0.2,重力加速度g取10m/s2,则:(1)经多长时间物块会与传动带共速。(2)经多长时间物块会从传动带右端掉下来。答案:(1)2s;(2)3s解析:(1)物块刚放上传动带时做匀加速直线运动,由牛顿第二定律可得mg=ma解得物块的加速度为a=2m/s2物块与传送带共速所需时间为t1=v0a=2s(2)物块匀加速运动的位移为s=v02t1=4m之后匀速运动到右端的时间为t2=L-sv0=1s物块从传动带左端到右端的时间为t=t1+t2=3s即经3s物块会从传动带右端掉下来。26、如图
25、,两个滑块A和B的质量mAmB2kg,放在静止于水平地面上足够长的木板C的两端,两者与木板间的动摩擦因数均为10.5;木板的质量mC4kg,与地面间的动摩擦因数20.1,某时刻A、B两滑块同时开始相向滑动,初速度大小分别为vA1m/s、vB5m/s,设最大静摩擦力等于滑动摩擦力,取重力加速度大小g10m/s2。(1)求刚开始时滑块A、B和木板C的加速度大小;(2)滑块A与木板C刚好相对静止时,滑块B的速度大小;(3)为确保滑块A、B不相撞,则木板C至少多长?答案:(1)5m/s2,5m/s2,0;(2)4m/s;(3)2.5m解析:(1)对滑块A受力分析得1mAg=mAa1a1=5m/s2对滑
26、块B受力分析得1mBgmBa2a25m/s2对木板C受力分析得:1mAg=1mBg木板与地面间无摩擦,故a3=0(2)设滑块A经时间t1速度减到0,在此过程中,滑块A 0=vA-a1t1滑块B vB1=vB-a2t1解得 vB1=4m/s(3)A从开始到速度减到0的过程中,滑块A向右运动的位移为xA1=At1-12a1t12滑块B向左运动的位移为xB1=Bt1-12a2t12设从滑块A速度减到0到滑块A、滑块B、木板C达到共速所用时间为t2,则在此过程中滑块A、木板C1mBg-2(mA+mB+mC)=(mA+mC)a4xA2=12a4t22vB1-a2t2=a4t2滑块BxB2=vB1t2-1
27、2a2t22x2=xB2-xA2L=xA1+xB1+x2=2.5m故木板C的长度至少为2.5m。27、2022年2月8日,我国选手谷爱凌在第24届冬季奥林匹克运动会女子自由式滑雪大跳台比赛中获得冠军参赛滑道简图如图所示,abcd为同一竖直平面内的滑雪比赛滑道,运动员从a点自静止出发,沿滑道abcd滑至d点飞出,然后做出空翻、抓板等动作其中ab段和cd段的倾角均为=37,ab段长L1=110m,水平段bc长L2=12m,cd坡高h=9m设滑板与滑道之间的动摩擦因数为=0.4,不考虑转弯b和c处的能量损失,运动员连同滑板整体可视为质点,其总质量m=60kg忽略空气阻力,g取10m/s2(1)运动员
28、从a到b所用的时间;(2)运动员到达c点时的速度大小;答案:(1)8.9s;(2)23m/s解析:(1)在ab段的加速度为mgsin-mgcos=ma根据运动公式L1=12at2解得a=2.8m/s2t=8.9s(2)到达b点时的速度vb=at25m/s 从b到c由动能定理-mgL2=12mvc2-12mvb2解得vc=23m/s28、一质量为m=1kg的物块原来静止在水平地面上,物块与地面之间的动摩擦因数为=0.2,现在施加给物块一个水平方向的恒力F,使物块开始做匀加速直线运动,要求在5s内前进25m,则施加的水平恒力F为多大?(重力加速度g取10m/s2)答案:4N解析:由位移公式可得x=
29、12at2由牛顿第二定律可得F-mg=ma联立解得水平拉力大小为F=4N29、如图所示,倾斜传送带长度L=5.8m,倾斜角度=37,传送带与水平面平滑连接,光滑水平面上放置两个用弹簧连接的滑块B和C,传送带以速度v0=4m/s顺时针传动,现将质量m1=1kg的滑块A(可视为质点)轻放在传送带的最高端,已知滑块A与传送带间的动摩擦因数=0.5,滑块B和C的质量分别为m2=2kg、m3=1kg,滑块A与B发生弹性碰撞(碰撞时间极短),重力加速度取10m/s2,sin37=0.6,cos37=0.8,求:(1)滑块A第一次到达传送带底端时速度大小;(2)滑块A与传送带间因摩擦而产生的内能;(3)滑块
30、B、C与弹簧构成的系统在作用过程中,弹簧的最大弹性势能和滑块C的最大动能。答案:(1)6m/s;(2)13.6J;(3)163J,1289J解析:(1)依题意,可得滑块A向下加速的加速度a1=gsin37+gcos37=10m/s2达到传送带速度所用时间t1=v0a1=0.4s下滑位移x1=12v0t1=0.8m此后滑块A的加速度a2=gsin37-gcos37=2m/s2设滑块A下滑到传送带底端时速度为v,则有v2-v02=2a2L-x1解得v=6m/s(2)滑块A第二段加速运动到传送带底端所用时间t2=v-v0a2=1s滑块A第一段加速运动过程与传送带间的相对位移d1=v0t1-x1=0.
31、8m第二段加速运动过程与传送带间的相对位移d2=L-x1-v0t2=1m滑块A与B发生弹性碰撞,有m1v=m1v1+m2v212m1v2=12m1v12+12m2v22解得v1=-2m/s,v2=4m/s可知滑块A沿斜面上滑,然后返回水平面,但追不上滑块B,滑块A向上冲到最高点所用时间t3=v1a1=0.2s再次返回传送带底端所用时间t4=t3=0.2s与传送带相对位移d3=v0t3+t4=1.6m滑块A与传送带间因摩擦而产生的内能E=m1gcos37d1+d2+d3=13.6J(3)滑块B与C作用,当两者达到共同速度时,弹簧弹性势能最大,有m2v2=m2+m3v共解得v共=83m/sEp=1
32、2m2v22-12m2+m3v共2=163J当弹簧恢复原长时,滑块C有最大动能,由动量守恒定律和机械能守恒定律得m2v2=m2v4+m3v312m2v22=12m2v42+12m3v32解得v3=163m/s则滑块C的最大动能Ek=12m3v32=1289J30、哈利法塔是目前世界最高的建筑。游客乘坐观光电梯从地面开始经历加速、匀速、减速的过程恰好到达观景台只需50秒,运行的最大速度为15m/s。观景台上可以鸟瞰整个迪拜全景,可将棕榈岛、帆船酒店等尽收眼底,颇为壮观。一位游客用便携式拉力传感器测得在加速阶段质量为1kg的物体受到的竖直向上拉力为11N,若电梯加速、减速过程视为匀变速直线运动(g
33、取10m/s2),求:(1)电梯加速阶段的加速度大小及加速运动的时间;(2)若减速阶段与加速阶段的加速度大小相等,求观景台的高度;(3)若电梯设计安装有辅助牵引系统,电梯出现故障,绳索牵引力突然消失,电梯从观景台处自由下落,为防止电梯落地引发人员伤亡,电梯启动辅助牵引装置使其减速到速度为零,牵引力为重力的3倍,下落过程所有阻力不计,则电梯自由下落最长多少时间必须启动辅助牵引装置?答案:(1)1m/s2、15s;(2)525m;(3)70s解析:(1)设电梯加速阶段的加速度大小为a,由牛顿第二定律得:FT-mg=ma解得a=1m/s2由v=v0at解得t=15s(2)匀加速阶段位移x1=12at
34、2=121152m=112.5m匀速阶段位移x2=v(50s-2t)=15(50-215)m=300m匀减速阶段位移x3=v22a=112.5m因此观景台的高度x=x1x2x3=525m(3)由题意知,电梯到地面速度刚好为0。自由落体加速度大小a1=g启动辅助牵引装置后加速度大小a2=F-mgm=3mg-mgm=2g 方向向上则vm22a1+vm22a2=x解得vm=1070m/s则tm=vmg=70s即电梯自由下落最长70s时间必须启动辅助牵引装置。31、如图甲所示,水平地面上有一足够长的木板C,质量为m3=2kg。 木板C上静置一物块B,质量为m2=1 kg。现有一质量为m1 =2 kg的
35、物块A以v0=5 m/s的速度从左端滑上木板C,木板C 与地面间的动摩擦因数为3=0.2,物块A与木板C间的动摩擦因数为1=0.4。物块A滑行一段距离后与物块B发生弹性正碰,碰撞时间极短。从物块A滑上木板C开始计时,木板C的速度随时间t变化的关系如图乙所示,设最大静摩擦力等于滑动摩擦力,物块A、B大小可忽略。取g=10 m/s2,求:(1)木板C刚开始运动时的加速度大小; (2)物块B与木板C间的动摩擦因数2;(3)物块A、B间的最终距离。答案:(1)1m/s;(2)0.4;(3)x=2815m解析:(1)由图乙可知木板C开始运动时的加速度大小a=vt=1m/s2(2)物块A与木板C之间的摩擦
36、力Ff1=1m1g=8N,Ff1=m1a1木板C与地面之间的最大静摩擦力Ff3=3(m1+m2+m3)g=10N所以开始物块A滑动时,木板C静止不动。物块A、B碰撞后都向右滑动的过程中,物块B与木板C之间的摩擦力Ff2=2m2g,Ff2=m2a2木板C的加速度a=Ff1+Ff2-Ff3m3解得2=0.4(3)由图乙可知木板在0.5s时开始滑动,说明物块A滑行0.5s时与物块B碰撞,碰撞前瞬间物块A的速度v2=v1-a1t1=3m/s物块A与物块B发生弹性碰撞,根据动量守恒定律得m1v2=m1v3+m2v4由机械能守恒定律得12m1v22=12m1v32+12m2v42解得v3=1m/s,v4=4m/sA、B碰撞后物块A向右减速,加速度大小为a1,物块B向右减速,加速度大小为
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100