1、 1.4 有理数的乘除法 授课时间:_1.4.1 有理数的乘法(1) 【教学目标】1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.能用乘法解决简单的实际问题.【对话探索设计】探索1(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?探索2(1)登山队攀登一座高峰,每登高1km,气温下降6,登高3km后,气温下降多少?(2)登山队攀登一座高峰
2、,每登高1km,气温上升-6,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6,登高-3km后,气温有什么变化?探索3(1)23=_;(2)-23=_;(3)2(-3)=_;(4)(-2)(-3)=_;(5)30=_;(6)-30=_.法则归纳两数相乘,同号得_,异号得_,并把_相乘.任何数同0相乘,都得_.旧课复习1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢? 的倒数呢?2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?探索4在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数. -0.2的倒数是多少?-7.29的倒
3、数呢? -的倒数是_;0的倒数_.3. _的两个数互为相反数._的两个数互为倒数.若a+b=0,则a、b互为_数,若ab=1,则a、b互为_数.4.计算:(1)(-6)4=_=_;(2) -=_=_.5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小? 1.4.1 有理数的乘法(2) 授课时间:_【教学目标】1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】探索11.下列各式的积为什么是负的?(1)-23456;(2)2(-3)4(-5)6789(-10).2.下列各式的积为什么是正的?(1)(-2)(-3)4567
4、;(2)-2345(-6)78(-9)(-10).观察1P38. 观察思考归纳几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见P38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值例题学习P39.例3观察2P39. 观察练习P39.练习作业 P46.7.(1),(2)(3),8,9,10,11.补充练习1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a; (4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2.几个数相乘,积的符号由负因数的个数决定
5、这句话错在哪里?3.若ab,则acbc吗?为什么?请举例说明.4.若mn=0,那么一定有( )(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?3210-1-2-339630-3262213210-1-2-36.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么? 1.4.1 有理
6、数的乘法(3) 授课时间:_【教学目标】1.熟练有理数乘法法则;2.探索运用乘法运算律简化运算.【对话探索设计】探索1你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?阅读理解乘法交换律和结合律(见P40)探索2下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?(1)2520044; (2) - 1999.探索3运用运算律真的能节省时间吗?分两个大组,比一比:计算(-198)().练习1运用乘法交换律和结合律简化运算: (1)19991258; (2) -1097().探索41.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,
7、两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?2.如右图,你会用两种方法求长方形ABCD的面积吗?例题学习P41.例5作业P41.练习补充作业1.计算(注意运用分配律简化运算):(1)-6(100-); (2)(-12).(2)2(-3)4(-5)(-6)789(-10);(3) 2(-3)4(-5)(-6)0789(-10);4.下列各式的积(幂)是正的还是负的?为什么?(1)(-3)(-3)(-3)(-3)(-3).5.运用乘法交换律和结合律简化运算: (1)-98(-0.6); (2)-1999(-)()【补充练习】1.某地气象统计资料表明,高度每增加,气温就降低大约.现在
8、地面气温是,则在的高空的气温是多少?2.运用分配律化简下列的式子:(1)例3x+9x+x (2)13x-20x+5x;=(3+9+1)x=13x;(3)12-18-9; (4)-z-7z-8z.第三章 一元一次方程一、背景与意义分析本课安排在第1章“有理数”之后,属于全日制义务教育数学课程标准(实验稿)中的“数与代数”领域。 方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。本课中引出了方程、一元一次方程等基本概念,并且对“根据实
9、际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的“数学建模思想”是本课始终渗透的主要数学思想。在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等
10、式方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。二、学习与导学目标、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。、技能掌握与
11、指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。利用率。、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到“从算式到方程是数学的进步”的含义。、观念确认与引导:通过经历“方程”这一数学概念的形成与应用过程,感受到“问题情境分析讨论建立模型解释应用转换拓展”的模式,从而更好地理解“方程”的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。三、障碍与生成关注通过“问题情境”,建立“数学模型”,难度较大,为此要充分引导学生关注生活
12、实际,仔细分析题目题意,促使学生朝“数学模型”方面理解。四、学程与导程活动(一)创设情景、引入新课同学们知道南通市的东城区吗?那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电厂已在东城区的新胜村拔地而起(图片展示),让我们乘路公交车去感受一下吧!假设路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示:地名时间小石桥8:00国胜东村8:09观音山8:17新胜村在观音山、国胜东村之间,到观音山的路程有千米,到国胜东村的路程有千米,请问小石桥到新胜村的路程有多远?先让学生读题,然后教师指出:这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,
13、标出两端地点。小石桥观音山最后师生共同逐句分析,并提问:你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:、看表格有:从小石桥到国胜东村有_分钟;从小石桥到观音山有_分钟;从国胜东村到观音山有_分钟。、你能画出汽车所经过四个地方的顺序图吗?不妨试一试;对照示意图,让学生指出有关路程的信息。教师最后整理成如下示意图:小石桥国胜东村新胜村观音山(二)动手实践、发现新知你会解决这个实际问题吗?不妨试一试。(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。)如果学生中有人利用方程做出,教师分析左右两边的意义;
14、如果没有,则作如下提示:如果设小石桥到新胜村的路程为千米,教师根据示意图,提出下列问题,让学生自主讨论口答:、小石桥到国胜东村有_千米,小石桥到观音山有_千米。、小石桥到国胜东村行车_分钟,小石桥到观音山行车_分钟。、从小石桥到国胜东村的汽车速度为_千米分。让学生口答,请学生判断修正,并提出此题中有哪些相等关系?从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?由此启发得出方程:指出:以后我们将学习如何从此方程中解出未知数X,从而得出小石桥到新胜村的路程。(三)类比分析、总结提高、方法解题时,列出的算式中只能用已知数表示;而方程是根据问题的相等关系列出的等式,其中既含有已知数,又
15、含有未知数,即方程是含有未知数的等式。同学们也看到列方程比较方便,而算式较繁。、列方程的步骤让学生根据例子,总结出列方程的三步骤:()设字母表示未知数;()找出问题中的相等关系;()写出含有未知数的等式方程。、对于上面问题,你还能列出其它方程吗?如能,你依据哪个相等关系?(学生讨论,代表发言)(四)例题分析、揭示课题同学们是否参加过学校的义务劳动呢?下面一起讨论义务为学校搬运砖块的问题。例、学校组织名少先队员为学校建花坛搬砖,六()班同学每人搬块,六()班同学每人搬块,总共搬了块,问六()班同学有多少人参加了搬砖?、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师
16、抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。先让学生试做,然后抓住时机,亮出如下表格,见机讲解。六()班六()班总数参加人数每人搬砖数共搬砖数、通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。由上面题目分析也得出:这些都是只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程(板书课题:一元一次方程)、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。、例:根据下列问题,设未知数并列出方程:()一台计算机已使用小时,预计每月再使用小时,经过多少月这台计算机的使用时
17、间达到规定的检修时间小时?()一根长的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?让位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。(五)总结巩固、初步应用 师生共同小结归纳上面的分析过程可以表示如下:设未知数找相等关系列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。、练习:()环形跑道一周长,沿跑道跑多少周,可以跑?()甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用元钱买了两种铅笔共枝,两种铅笔各买了多少枝?()一
18、个梯形的下底比上底多,高,面积是,求上底。、作业:课本页第、题。五、笔记与板书提纲课题例例示意图定义例列方程的分析过程归纳六、练习与拓展选题根据生活经历,自编一道列方程应用题。七、个别与重点辅导:学生姓名(略)八、反思与点评记录第三章、一元一次方程:3.1从算式到方程教学目标:1了解什么是方程,什么是一元一次方程;2通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发
19、学习数学的热情。教学重点:1了解什么是方程、一元一次方程;2分析实际问题中的数量关系,利用其中的相等关系列出方程。教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。教学过程:一、游戏激趣 同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;。现在,我们就来“比一比,说儿歌” (屏幕出示)。要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想
20、个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水” )(屏幕出示)这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。二、 创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢? 好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗? 如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。此时你又分得多少颗?(让学生自己回
21、答出两种解法代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。今天这一节课我们就共同来研究“2.1节从算式到方程”。 3、什么是方程?同学们还记得吗?请大家回忆一下。、4、刚才的问题是用列方程的方法解答的请举手。确实,方程也是解决问题的一种好方法。(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)三、呈现问题,自主探索1、请你用算术方法或列方程解决下列问题:每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左
22、边,如果列方程请写在右边。注意:我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。现在开始。2、学生自由到黑板上写3、现在请各位同学解释一下自己的方法。(学生在座位上回答,教师适当提醒学生说出等式两边的含义和列方程所依据的相等关系。针对解题格式上的问题加以提醒。)统计每道题用算术方法和用代数方法的人数。4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?(生答)其实呀,方程确实是一种应用很广泛的数学工具,在现实生活中有好多好多的问题可以用方程解决。下面我们不妨来试试看。
23、好吗?(设计意图:通过几道例题,1、让学生初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,2、渗透建立方程模型的思想)四、巩固练习,提高发展1、现在我们就用列方程的方法解决问题,请拿出学案纸,完成第一大题。要求是:(屏幕出示)根据下列问题,设未知数并列出方程,同样不需要求出结果。2、学生独立完成。3、哪位同学来讲讲你做的第一题,说说你的解题思路和过程。4、通过刚才的研究,我们发现利用方程解决问题要经过哪些步骤呢?先设未知数,然后根据相等关系列出方程,这样,就将实际问题转化成了数学问题。(设计意图:通过练习让学生继续学会分析实际问题中的数量关系,利用其中的相等关系列出方程。)五、合
24、作学习,开拓创新1、我们知道,数学来源于生活,又应用于生活。今天,老师在来滨江初中的过程中,遇到了这样一个问题:汽车匀速行驶,7:00从实验初中出发,7:30途经常青初中到达滨江初中是7:50,吴庄在常青初中、滨江初中两地之间,距常青初中6千米,与滨江初中的距离是总路程的,问实验初中到吴庄的路程有多远?现在,就请大家运用你所掌握的知识、方法,结合线段图解决它。请拿出学案纸,看第二大题,只需要列式,并说出理由,不需要求出结果。请大家先独立思考,然后学习小组内互相交流,互相讨论,看看谁想到的方法多。现在开始。2、学生完成3、学生展示不同的方法。 (设计意图:改变书上的引例,把它换成现实生活中的实例
25、,鼓励学生探索、合作、交流,有利于激发学生的学习兴趣)六、交流收获,归纳总结各组同学都积极开动脑筋,想出了各种方法解决问题,看来同学们今天都是“学有所获”,我们共同来对今天的学习活动作一个总结与回顾。 通过本节课的学习,你有哪些收获? 七、课后作业,拓展视野1必做题:阅读课本第72页“阅读与思考”;完成课本第75页第1题,第76页第5、6题。2选做题:课本第74页第10题。教学反思:本节课我在本校执教的时候效果较好,而到滨江初中上这一节课,结果却不尽如人意,甚至没有能完成预定的教学任务。通过这一节课,我感受最深的一点是:要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会
26、从学生的角度看问题,也就是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。一元一次方程的讨论(1)【教学目标】1.经历运用方程解决实际问题的过程;2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.通过具体的例子感受一些常用的相等关系式.【对话探索设计】探索1(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是_;今年购买的计算机的数量
27、是_;三年总共购买的数量是_.(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?解:设前年购买计算机x台,那么,设计(1)是让学生感受列代数式是列方程的基础.去年购买的计算机的数量是_;今年购买的计算机的数量是_;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:_.合并得_.系数化为1得_.答:_.归纳:总量等于各部分量的和是一个基本的相等关系.探索2(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_本.(2) 把一
28、些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_本.(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本.这个班有多少学生?解: 设这个班级有x名学生,根据第一关系,这批书共_本;根据第二关系,这批书共_本;这批书的总数是个定值,表示它的两个不同的式子应该相等.熟悉这些关系有助于列方程.根据这一相等关系列得方程:_.想一想,怎样解这个方程?归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.练习1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_吨.(2)
29、灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨.每块地各用水多少吨?解:设第二块地(漫灌)用水x吨,根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量25%),得第一块地(喷灌)用水_吨.根据关系: 两块地共用水300吨,可列方程:_.解得_.答:_.作业P79.练习,P84.1,6补充作业1.按要求列出方程:(1)x的1.2倍等于36; (2)y的四分之一比y的2倍大24.2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.解:设前年的产量是x吨,根据关系: 去年的
30、产量是前年的2倍还多150吨,得去年的产量为_,根据去年的产量是950吨列方程:_ .解得_.答_.一元一次方程的讨论(2)【教学目标】1.进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;2.学会合并(同类项)及移项,会解ax+bx=c及ax+b=cx+d类型的一元一次方程;3.初步体会一元一次方程的应用价值,感受数学文化;4.理解解方程的目标,体会解法中蕴涵的化归思想.探索1等式一边的项可以移到等式的另一边吗?例如:3+5=8这是一个等式.把左边的一项3移到右边,得到什么式子?这时等式成立吗?如果把3变号后移到的另一边呢?换一个等式-6-7=-13试一试.任写
31、一个等式再试一试.探索2(1)方程x+3=-1的解是多少?(1)把方程x+3=-1中左边的常数项”3”移到右边,就得到方程x=-1+3.所得的方程的解与原方程的解一样吗?探索3怎样求方程x-7=5的解?有的学生可能还是乐意用算术解法,教师要有足够的耐心.甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_),于是x=12.乙的解法是:这是一个等式,根据等式的性质1,等式两边_,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.议一议,三种
32、解法,你乐意用哪一种?归纳解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.注意:移项的要点不在移动,而在于变号. 想一想:移项为什么要变号?移项的根据是什么?探索4以下各方程的“移项”对不对?为什么?(1)x+5=7,移项得x=7+5;(2)3-x=7,移项得-x=7-3;(3)2x=7x,移项得2x+7x=0;(4)2x=7x-6,移项得2x-7x=-6.探索5移项的目的是把方程化为ax=b的形式,以下的“移项” 都达不到预期的目的.你认为应该怎样做才对?(1)3x+6=0, 移项得0=-3x-6;(2)3x=5x-7,移项得3x+7=5x;(3)3-x=5x, 移项得3-x-5
33、x=0;(4)3x+20=7x-18, 移项得-7x+18=-3x-20.例题学习P81.例1练习P81.练习作业P84.习题2,3,9补充作业1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.解:设原两位数十位上的数为x ,那么,根据个位上的数是十位上的数的2倍,得个位上的数是_, 则原两位数记为_.因为对调后所得到的新两位数的十位上的数为_,个位上的数为_,新两位数应记为_.根据新两位数比原两位数大36,列方程:_.解这个方程得_.答:_.2.小调查今年6月份你家的固定电话的收费是多少?找出发票,看看费用当中具体
34、分为哪几项? 一元一次方程的讨论(3)【教学目标】1.熟练应用合并(同类项)及移项,解ax+bx=c及ax+b=cx+d类型的一元一次方程;2.进一步感受如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.初步体会一元一次方程的应用价值,感受数学文化.练习P85.习题9探索1(1)有一列数,按一定的规律排成1,-3,9,-27,81,-243,如果其中有一个数是x,那么跟在它后面的两个数依次为_,_.如果其中有一个数是y,那么它前面的哪个数是_,后面的那个数是_.(2)有一列数,按一定的规律排成1,-3,9,-27,81,-243,其中某三个相邻数的和是567,这三个数
35、各是多少?相信你能自己解决这个问题了!例题学习P81.例2想一想:如果设这三个相邻数中的第二个数为y,怎么列方程?解是多少?探索2(1)“全球通”移动电话的计费方法是:月租费50元/月,本地通话费0.40元/分.一个月内,若通话200分,需交费_元;若通话x分,需交费_元.(2)李老师5月份“全球通”移动电话消费130元,求通话的时间是多少分.全球通神州行月租费50元/月0本地通话费0.40元/分0.60元/分探索3“全球通”和“神州行”两种移动电话的收费方式如表:用“全球通”每月收月租费50元/月,此外根据累计通话时间按0.40元/分加收通话费. 用“神州行”,不收月租费, 根据累计通话时间
36、按0.60元/分收通话费.(1)若一个月内在本地通话100分,按两种计费方式各需交多少元?选择哪一种计费方式比较便宜?通话时间若是300分呢?(2)若累计通话t分,则用“全球通”要收费_元; 用“神州行”要收费_元.(3)当本地通话时间是多少分时,两种收费方式的收费一样?(4)你认为在什么条件下选择“神州行”更便宜?(5)请为你的家长在“全球通”和“神州行”两种移动电话的收费方式中选择一种,并说明理由.补充作业1.国庆节前几天,两家商店的同一种彩电的价格相同. 国庆节两家商店都有降价促销活动.甲商店的这种彩电降价500元,乙商店的这种彩电打9折.若原价是2 000元/台,到哪一家商店买便宜?若
37、原价是20 000元呢?当原价是多少时,降价后的价格仍然相等?2.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问当一年内累计消费多少元时,买卡与不买卡要花一样的钱?什么情况下买卡合算?一元一次方程的讨论(2)(一)【教学目标】1.掌握去括号的方法;2.会根据顺流速度、水流速度及逆流速度三者之间的关系解题;3.让学生进一步感受列方程解决实际问题的一般思路.【对话探索设计】复习导入1.去括号是解方程时常用的变形,分别将下面的方程去括号:(1)方程3x+5(13-x)=54,去括号得_;(2)方程3x-5(13-x)=54,去括号得_.探索1顾客用
38、540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布.两种布料各买了多少?( P86.问题)分析:在这个问题中,一共有几个有关元素?几个相等关系?解:设买了蓝布料x俄尺,那么,根据关系_,得买了黑布料_俄尺,根据关系_,得买蓝布料要花_卢布,根据同样关系,得买黑布料要花_卢布.让学生初步感受列方程解决实际问题的一般思路.想一想:最后还有哪一个关系没有用上?你能用这个关系列方程吗?你会解这个方程吗?例题学习 P87.例1探索2船速问题与学生的生活有一定距离,设计本题为探索3作铺垫.一艘船在静水中的速度是27千米/时,它从甲码头到乙码头顺流行驶,用了2小时,若水流的速度是
39、3千米/时,求两码头间的距离及该船从乙码头返回到甲码头所需的时间.(提示:顺流速度=静水中速度_水流速度;逆流速度=静水中速度_水流速度.)探索3一艘船从甲码头到乙码头顺流行驶,用了2小时, 从乙码头返回到甲码头逆流行驶, 用了2.5小时, 已知水流的速度是3千米/时,求船在静水中的速度.解:设船在静水中的速度是x千米/时,那么,根据顺流速度、水流速度及逆流速度三者之间的关系,得船的顺流速度是_千米/时, 逆流速度是_千米/时,根据速度、时间、路程之间的关系,得船的顺流路程是_;逆流路程是_.根据往返路程相等列方程:_.解这个方程得_.答:_.练习P88.练习(1)作业P88.练习(2),P9
40、3.习题.1,2,4补充练习1.今年父亲32岁,儿子5岁,哪一年父亲的年龄是儿子的10倍?先猜测答案,再列方程解.2.甲、乙两人练习100米跑,甲每秒跑7米,乙每秒跑6.5米.如果甲让乙先跑1秒,甲经过几秒可以追上乙?(你会画示意图检验你的答案吗?)一元一次方程的讨论(2)(二)【教学目标】1.进一步掌握去括号的方法;2.了解配套问题的实际运用;3.了解间接设元法;3.进一步感受到数学的应用价值,激发学生学习数学的积极性和信心.【对话探索设计】探索1某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:(1)如果让一半的工人生产螺钉,另一半生产螺母,会出现什么情况?(2)为了使每天的产品刚好配套,生产出来的螺钉与螺母的数量之间应满足怎样的关系?解:设分配x名工人生产螺母,
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100