ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:1.03MB ,
资源ID:2147228      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2147228.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高考数学中内切球和外接球问题.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考数学中内切球和外接球问题.doc

1、高考数学中的内切球和外接球问题 一、 有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面

2、积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ). A. B. C. D. 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为

3、则这个球的体积为 . 解 设正六棱柱的底面边长为,高为,则有 ∴正六棱柱的底面圆的半径,球心到底面的距离.∴外接球的半径. 体积:. 小结 本题是运用公式求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 . 故其外接球的表面积. 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方

4、体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,几何体的外接球直径为体对角线长 即 练习:在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。球的表面积为 例 6一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( ) A. B. C. D. 例7 已知球的面上四点A、B、C、D,,,,则球的体积等于 . 图5 解析:本题同样

5、用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于,,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为,则此长方体为正方体,所以长即为外接球的直径,利用直角三角形解出.故球的体积等于.(如图4) 图4 2、 例8(2008年安徽高考题)已知点A、B、C、D在同一个球面上,,,若,则球的体积是 解析:首先可联想到例7,构造下面的长方体,于是为球的直径,O为球心,为半径,要求B、C两点间的球面距离,只要求出即可,在中,求出,所以,故B、C两点间的球面距离是.(如图5) 本文章在给出图形的情况下解决球心位置、半径大小的问

6、题。 三.多面体几何性质法 例.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A. B. C. D.. 小结:本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 四.寻求轴截面圆半径法 例正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则此球的体积为 解:设正四棱锥的底面中心为,外接球的球心为,如图1所示.∴由球的截面的性质,可得. 又,∴球心必在所在的直线上. ∴的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在中,由, ∴. ∴是外

7、接圆的半径,也是外接球的半径.故. 小结:根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 五 .确定球心位置法 例5 在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为 A. B. C. D. 解:设矩形对角线的交点为,则由矩形对角线互相平分,可知.∴点到四面体的四个顶点的距离相等,即点

8、为四面体的外接球的球心,如图2所示.∴外接球的半径.故. 出现两个垂直关系,利用直角三角形结论。 【原理】:直角三角形斜边中线等于斜边一半。球心为直角三角形斜边中点。 【例题】:已知三棱锥的四个顶点都在球的球面上,且求球的体积。 解:且 因为 所以知: 所以 所以可得图形为: 在中斜边为 在中斜边为 取斜边的中点, 在中 在中 所以在几何体中,即为该四面体的外接球的球心 所以该外接球的体积为 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。 1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,

9、其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A. B. C. D. 答案 B 2. 直三棱柱的各顶点都在同一球面上,若 ,,则此球的表面积等于 。 解:在中,,可得,由正弦定理,可得 外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为. 3.正三棱柱内接于半径为的球,若两点的球面距离为,则正三棱 柱的体积为   . 答案 8 4.表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为

10、A. B. C. D. 答案 A 【解析】此正八面体是每个面的边长均为的正三角形,所以由知, ,则此球的直径为,故选A。 5.已知正方体外接球的体积是,那么正方体的棱长等于( ) A.2 B. C. D. 答案 D 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( ) A. 1∶ B. 1∶3 C. 1∶3 D. 1∶9 答案 C 7.(2008

11、海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为      . 答案 8. (2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为    . 答案 9.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm的球面上。如果正四 棱柱的底面边长为1 cm,那么该棱柱的表面积为  cm2. 答案 A B C P

12、 D E F 10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥,则此正六棱 锥的侧面积是________. 答案 11.(辽宁省抚顺一中2009届高三数学上学期第一次月考) 棱长为2的正四面体的四个顶点都在同一个 球面上,若过该球球心的一个截面如图,则图中 三角形(正四面体的截面)的面积是 . 答案 12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 ( ) A. B. C. D.以上都不对 答案C 13.设正方体的棱长为,则它的外接球的表面积为( ) A. B.2π C.4π D. 答案C 9 / 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服