ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:3.40MB ,
资源ID:2143199      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2143199.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于标准距离端点数据重组的标定优化方法.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于标准距离端点数据重组的标定优化方法.pdf

1、第34卷第3期2023年9 月【文章编号】2096-2835(2023)03-0357-07基于标准距离端点数据重组的标定优化方法中国计量大学学报Journal of China University of MetrologyDOI:10.3969/j.issn.2096-2835.2023.03.005Vol.34 No.3Sep.2023陈雨婷,谢胜龙,邹伟(1.中国计量大学机电工程学院,浙江杭州310 0 18;2.中国计量科学研究院,北京10 0 0 2 9)【摘要】目的:提高多边测量系统参数的标定精度。方法:距离约束标定方法通过获取固定端点间长度作为标准距离,采用数学优化方法进行系统

2、参数的标定。因干涉测距误差存在,标准距离两端固定点对应干涉测长中的误差导致标定的标准距离误差增加,影响了系统参数标定误差及系统测量误差。为此提出一种基于标准距离端点标定数据重组的标定优化方法,重新组合标定数据,以组合后的每组标定测长数据作为约束条件,进行迭代筛选得到标定数据的最优组。结果:仿真验证了标定方法的可行性,通过实验验证两种布局下采用重组优化标定后的测角误差区间分别为 一7 ,6 、一11,11 。结论:该标定优化方法可以有效剔除受测距误差影响较大的标定数据,提高标定精度,且适用于不同测量布局。【关键词】大空间测量;多边法;标定方法【中图分类号】TB92【文献标志码】ACalibrat

3、ion optimization method based on the reorganization ofstandard distance endpoint dataCHEN Yuting,XIE Shenglong,ZOU Wei?(1.College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China;2.National Institute of Metrology,Beijing 10029,China)Abstract Aims:This paper aim

4、s to improve the calibration accuracy of multilateral measurement systemparameters.Methods:The distance-constrained calibration method used the mathematical optimization methodto calibrate the spatial relationship of multiple laser tracking interferometers by obtaining the length betweenthe fixed en

5、dpoints.Due to the existence of interferometric ranging errors,the error in the interferometriclength measurement corresponding to the fixed points at both ends of the standard distance led to the increaseof calibrated standard distance errors,which affected the parameter calibration error and syste

6、m measurementerror.A calibration optimization method based on the standard distance was proposed;and the combinedcalibration data re-optimized.It took the combined calibration length of each group as the constraint conditionto iteratively screen the optimal combination of the calibration data.Result

7、s:Simulation verified the feasibility【收稿日期】2023-02-18【基金项目】国家自然科学基金重点项目(No.51935004),基本科研业务重点项目(No.AKYZDD2213)【通信作者】邹伟(198 5),男,助理研究员,博士后,主要研究方向为角度计量、视觉测量等。E-mail:中国计量大学学报网址:358of the calibration method.Through experiments,it was verified that the angular measurement error ranges forthe two layouts

8、using reorganization optimization calibration were-7,6,-11,11J.Conclusions:Thecalibration optimization method can effectively eliminate calibration data that are greatly affected by rangingerrors,can improve calibration accuracy,and is suitable for different measurement layouts.Key words large-scale

9、 calibration;multilateral method;calibration method近年来大尺寸空间测量技术的应用日益广泛,随着测量任务难度增加,工业生产装备过程及现场在线校准对测量仪器的功能与实用性要求越来越高 1-2 。对于目标空间位置和运动轨迹的测量,目前应用较多是多边法。多边法由多台仪器联合同时测量目标,测量前须标定仪器参数,再由标定过的系统参数参与测量,因此,保证系统参数标定精度对后续测量是尤为重要的 31。国内外学者对系统参数标定方法的研究现状如下。Majarena等 4使用三坐标测量机测量并联机构自身安装的球体,以获取并联机构在不同位置时球体的参考空间坐标,将参

10、考坐标值进行坐标系转换后再对并联机构进行标定;Aguado等 5将三台激光跟踪仪布置在数控机床周围做径向和纵向测量,通过跟踪数控机床的刀具获取空间中多点的位置信息 6 ,对比刀具移动距离和激光跟踪仪测量距离,利用最小二乘平差法对仪器位置进行二次校准标定;Conte等 7 为标定单台激光跟踪仪,采用多站位法测量三坐标测量机测量的标准长度,建立了对比误差最小化的测量模型,减少了测量点数;Sun等 8 1在标定星跟踪器时通过改变相机位置,从多角度测量目标,二次测量保证了模型标定精度;Wan等 9利用一台激光跟踪仪通过多站法,测量多组空间点位置,建立了基于不同测量误差沿三个坐标轴分布的加权模型,得到模

11、型中协方差最小的最优仪器参数;林永兵等 10 1针对四路激光跟踪干涉测量系统提出一种无约束动点自标定的方法,建立了空间点与仪器之间的距离模型,将残差二次方作为评价方法,测量多个空间点直至点数满足系统参数标定条件,操作简单;缪东晶等 11提出一种七路激光跟踪干涉位姿测量系统的标定方法,通过将被测平面的三点极其间距包含到标定过程中,实现同时标定系统参数和静态位姿的测量;郑继辉等 12 在无约束动点自标定的基础上加入了加权标准长度约中国计量大学学报束,使用激光跟踪仪的干涉模式配合平面反射镜测量若干长度作为参考,再使用标准长度进行标定。多边测量系统的标定方法按照仪器位置分为单台仪器多站位二次标定和多台

12、仪器同时进行标定,多台仪器的标定方法基本以参考物作标准 13-16 多边测量系统以激光跟踪干涉仪为例,使用四台及以上测量目标空间位置,六台及以上实现位姿测量,测量与标定均遵循干涉测距原理。标定时加人若干固定点组成的标准距离作为约束,靶球放置于标准距离两端靶座获取固定点对应的干涉测长值,由于干涉测距误差存在,引起标准距离标定误差增加,导致系统参数的标定误差增加。若多次标定则标定数据穴余且效率较低。为提高标定效率减小标定误差,本文在标准距离约束标定的基础上,提出一种固定点标定数据重组的标定优化方法,通过增加标准距离固定端点的标定测长获取次数,在不改变标定点顺序的前提下将固定点的对应测长重新组合扩大

13、标定数据组数,迭代筛选得到标定最优组合,从而减小标定误差,进一步降低了系统测量误差。1系统参数标定方法1.1标定布局本文采用六路激光跟踪干涉仪进行标定和测量。六台激光跟踪干涉仪S,(n=1,2,36)的布局关系为:S1作为坐标系原点(0,0 0),S2位于轴上设为(as,,0,0),S位于oy平面内设为(rsyss,0),S4、Ss、S。靠近coy平面坐标依次为(rstys2s,)(as ys,zs,)(cs yss2s.)。在空间内设置6 个固定点(P1P.)组成4段标准距离d;(i=1,2,3,4),标准距离由文献 12 中激光跟踪仪的干涉模式和平面反射镜结合的方法测量得到。在方向3个不同

14、高度各选取均匀分布的10 个点,共36 个空间点P(k=1,2 36),第34卷第3期P,P36 为无距离约束的随机空间点。初始点P1为基站获取初始测长的固定点,标定后系统进行测量时仍需在该点获取初始测长,将初始点作为两段不同方向的初始距离的共同端点,标定时采用两段标准距离约束该点的空间坐标,如图1。S3S4P48d2图1六路激光跟踪干涉仪标定布局Figure 1 Calibration layout of six laser tracking interferometer1.2标准距离约束算法6台激光跟踪干涉仪的待求参数为12 个,每台基站在初始点对应的初始距离设为lno,待标定的参数共18

15、 个,激光跟踪干涉仪跟踪靶球在任一空间点获取的激光跟踪干涉仪测长为1空间点相对于初始点P1的长度变化量为/k=lk-lm l。每个空间点与基站的相对距离表示为qu=Lo+Lk。因此通过基站表示空间点的坐标如式(3):+y+z=Qik,(a s 一)2+=q,(s,-)2+(ys。y)2+2=Q s k。将每个空间点对应的标定测长作为约束条件,基站与各点之间的距离应接近于测长表示的相对距离,通过两点间距离公式,以最小二乘法的思路构建基站与标定点间的空间位置关系,如公式(4):F1=+一qik,F2k=2一a)2+一Q2k,Fs=(3-)2+(y 3-y)2+-q,Fu=(,-)2+(y,)+(z

16、,-z)-dit。(4)陈雨婷等:基于标准距离端点数据重组的标定优化方法S2SSOP2dOP3PdAoP.Pod359加入4个标准距离的约束,约束的两固定端点间距离应与标准长度值接近,通过约束对应的固定端点间距获取固定点坐标,由此构建固定点距离约束方程(5):Fi=i(23)2+(y2-s)+(z23)-di),Fz=()2+(ys-y)2+(z-z)-d),F=w(i)2+(y1ys)2+(zzs)-d),F=w(-)2+(y-)+(z-z)-d)。(5)其中w;为各距离约束的权重值,将式(3)中的P(,k,)表达式代人式(4),当k=16时,P对应标准距离约束的固定端点,将式(3)的P表达

17、式代人式(5),构建方程为超定方程,设定求解参数的初值,采用Levenberg-Marquardt法10 x3进行选代求解。1.3标定优化方法用于系统参数标定的空间点分为固定点与非固定的随机点,对于固定点而言,除距离约束外也受基站干涉测长约束。将每个标准距离固定端点的干涉测长采集次数由1增加到h,每个固定端点有h个集合,每个集合中包含6 个干涉测长元素,按照标定空间点顺序,对所有固定端点的集合进行重新组合。初始点Pi对应的lk为O,故实际重组的是5个固定端点的标定数据,标定组数(1)由h变为M:M-CIXCIX.XC=h.(2)每组包含的标定点数依然为36 个,对重组后的每一组数据依次代人算法

18、进行迭代筛选,流程如图2。通过LM法进行非线性最小二乘求解系统(3)参数,标定的标准长度端点为Pd.1,Pa.2,计算所有组的标准长度误差绝对值的均值Ed,如式(7):M1Pa.,Pa2 ll 2-d;:1Ed,=M将Ea,作为迭代优化的终止条件,搜索所有组中标定误差和最大一组并剔除,即依次剔除掉固定点对应干涉测长误差最大的组:M-m21 l Pa,Pi l-d.IEa.=金M-m(6)(7)O(8)C360Figure 2Optimize algorithm process将剩余组的均值Ea,与剔除之前的Ea作比较,若减小则继续搜索最大值,直至标定误差绝对值均值不再减小,共剔除组数m组,得到

19、标定测长的最优组合,完成系统参数标定。2仿真实验本文使用MATLAB对优化方法的标定效果进行仿真,设置如图1布局所示的空间点。标定空间为5mX2mX2m的立方体,在标定空间中布置点Pi(130 0,2 0 0 0,40 0 0)、P2(150 0,0,4000)P3(500,0,4000),P4(-1500,4500,4000)、Ps(-1 30 0,2 10 0,6 0 0 0)、P。(130 0,3000,6000)作为固定端点,生成对应的标准距离中国计量大学学报参考值,并按照1.1节中的布局加入30 个均匀分开始布的空间点作为非固定的随机点。6 个基站的理固定点PiPs各测量h组论坐标分

20、别为(0,0,0),(196 5,0,0),(1452,重组组数M-hs4132,0),(1100,4100,500),(1100,500,一2 0 0)(-12 0 0,2 0 0 0,10 0),单位为mm。计算MMM标准距离约束LM算法A(mx)=ediyedavedavedamMEddiMMFindmax=sum(edimedamedsmedam剔除组数m+1,剩余M-M-1ediMEi=1dMEd,Ea,(i=1,2,3,4)香输出系统参数结束图2 优化算法流程图第34卷每个基站与每个空间点之间的距离,得到各空间点相对于初始点Pi的长度变化量l录,因激光跟踪干涉仪的测长不确定度U为0

21、.2 m十0.3m/m,在每个空间点对应的/中加入一U,U的噪声模拟实际情况中的干涉测长变化量。对比相同标准距离时4种标定方式的标定效果,约束算法的权重均相同,w=1。仿真1为不重组的单组标定,即获取固定点和非固定随机点的干涉测长值各一组,进行常规的标准距离标定。在前者的基础上使每个固定端点的测长获取次数为h=3,仿真 2 为不重组的三组均值标定,即对每个固定点的3组测长数据取均值后以单组进行常规标准距离的标定。仿真3为重组后不筛选多组取均值标定。仿真4为重组优化标定,根据1.3节所介绍的标定优化方法进行标定。4种标定得到系统参数和标准距离后,根据是参考值求解各自的误差,如图3。3仿真1仿真2

22、仿真3仿真4m/20图3中从左至右依次表示了标准距离di、d2、d 3、d 4的标定误差在4种不同标定方式下的变化,解算结果如表1,仿真1不重组单组标定的标准距离误差最大;仿真2 和仿真3两种取均值的标定方式标定的标准长度误差均比仿真1有所d图3标准长度标定误差Figure 3 Standard length errord2标准长度/mmdd4(a)布局1第3期减小;仿真4重组优化标定相对前三种标定减小了标准距离的标定误差。表1不同标定方式的标准距离误差Table 2Standard distance error of different calibrationmethods方式edi仿真11

23、.2仿真20.1仿真30.1仿真4一0.2计算4种标定方式标定的基站坐标与理论坐标之间的距离,基站坐标标定误差如表2,仿真4的重组优化标定相较仿真1不重组的单组标定,基站坐标最大标定误差由37.3m降低到17.4um,可见随着标定误差绝对值之和减小,基站坐标标定误差也随之减小。表2 不同标定方式的基站坐标误差Table 2Base station coordinate error of different calibra-tion methods方式最大误差仿真137.3仿真227.4仿真329.6仿真417.43实验验证为了进一步验证标定优化方法的有效性,以及对于不同测量布局的适用性,标定不

24、同测量布局下的系统参数并进行角度测量实验。3.1标定实验及结果实验采用6 台激光跟踪干涉仪SiS,系统参数设置如1.1节所述,采用两种基站布局进行实验,如图4。6 台基站同时跟踪一个靶球,初始点P1作为第一个标定点,靶球在标准距离端点的靶座上被重复放置得到3组标定测长,每次获取六台基站在该点的标定测长,根据标定布局在大理石台上分3个高度的平面均匀选取30 个非固定的随机点,共取空间点36 个。4段标准距离通过激光跟踪仪提前测量。采用4种方式对两个布局的系统参数进行标定,通过解算的标准距离固定点坐标,计算标准距陈雨婷等:基于标准距离端点数据重组的标定优化方法umed2ed3-0.22.70.0-

25、1.40.0-1.70.2一0.4最小误差误差均值0.613.80.09.20.39.61.56.1361S23eda-0.9-1.7-0.4一0.2m2为不重组的3组均值标定,实验3为重组不筛选多组取均值标定,实验4为重组优化标定,4种标定方式权重默认为1,结果见表3和表4。表3布局1标定结果Table 3Layout 1 calibration results实验编号ed10.620.430.440.3表4布局2 标定结果Table 4 Layout 2 calibration results实验编号ed1-0.42一0.23一0.240.0SFigure 4Layout of base

26、station离标定误差。实验1为不重组的单组标定,实验ed2ed0.01.70.01.50.01.80.01.0ed2ed一0.12.6一0.11.1一0.11.1一0.10.3(b)布局2图4基站布局ed一0.7一0.50.50.3umed40.90.50.40.0362分别采用4种标定方式标定布局1和布局2的系统参数,不同布局下采用实验4重组优化标定相对实验1不重组的单组标定的标准距离误差均有所降低,实验2 和实验3两种取均值的标定方式减少标定误差的效果不及实验4。可见,重组优化标定有效剔除了受测距误差影响较大的标准距离固定点标定测长数据。3.2角度测量实验多边系统测量空间点坐标的测量不

27、确定度与标定不确定度有关,系统测量被测物坐标的误差受标定误差影响。为了对比重组标定优化方法和其他标定方法对测角误差的影响,采用6 台激光跟踪干涉仪、1个靶球和分辨率为1 的高精度回转台进行测量。不同布局下均使回转台从零位转动到30、90 18 0 2 7 0 36 0,将转台示值作为参考值。实验装置见图5,靶球放置于初始点P1靶座上采集6 台基站的初始测长,再移至转台平面的靶座上开始测量。中国计量大学学报度误差比不重组单组标定和两种取均值的标定得到的误差小。标定1不重组的单组标准距离标定后所测量的角度误差区间为一7 ,8 ,重组优化标定后所测量的角度误差区间为一7 ,6 。对于布局2 的角度测

28、量,分别采用4种标定方式标定的系统参数参与靶球坐标的解算并计算角度。根据表6 数据,重组优化标定对应的测量误差依然比其他三种标定对应的误差小。标定1不重组的单组标定后所测量的角度误差区间为一13,13,采用重组优化标定后所测量的角度误差区间为 一11,11。表5布局1实验结果Table 5Layout 1 experimental results参考角度/()1/()30.0002190.0003-3180.0008一7270.00088360.00062第34卷2/()3/()11一2一2一7一777214/()1-1761表6 布局2 实验结果靶球初始点P图 5角度测量Figure 5 a

29、ngle measurement控制转台转动36 0,获取6 台激光跟踪干涉仪测量的靶球整周的轨迹点,通过最小二乘法对整圆轨迹点拟合得到轨迹的圆心。再使转台转动不同角度,测量靶球在起始点和终点的空间坐标,并结合圆心坐标计算两向量间的夹角,作为测量的角度,将其与转台示值角度作比较。在两种布局下进行实验,采用标定方法14各自标定的基站坐标对同组角度测量数据进行解算,各自的测量误差见表5和表6。对于布局1的角度测量,分别采用4种标定方式标定的系统参数参与靶球坐标的解算并计算角度。根据表5数据,重组优化标定后测量的角Table6Layout 2 experimental results参考角度/()1

30、/()30.0001-590.0005-13180.0010-12270.000913360.00083实验结果表明,在不同布局下,重组优化标定的标准距离误差与不重组单组标定相比有不同程度的减小。同时对比了在增加固定点标定次数时,标定方式2 4的不同数据处理方式对测量结果的影响,表明重组优化标定对于减小测量误差的效果最为明显。布局1中,重组优化标定使测角误差由8 减小到5;布局2 中,重组优化标定使测角误差由13减小到11。4结语本文提出一种多边测量系统的标定优化方法,该优化方法通过增加距离约束固定端点的采集次数,对固定点标定数据重新组合,扩大标定数据组数。组合后的每组标定测长作为标准距离约2

31、/()-3-10-121113/()一3-10-121224/()一3-10-11111第3期束算法的约束条件进行迭代求解,剔除标定误差最大的组合,对剩余组继续迭代筛选标定得到标定测长的最优组合。仿真对比了不同标定方式对系统参数标定误差的影响,再通过不同布局的角度测量实验对比了不同标定方法在不同布局下的测量效果。重组优化标定对于两布局角度测量误差区间由一7 ,8 、一13,13 分别减小为-7 ,6 、-11,11。该方法使标准距离的标定误差减小以提高系统参数的标定误差,进而降低了不同布局的测量误差,表明该方法能够有效剔除受干涉测距误差影响较大的固定测长数据,且适用于不同布局。【参考文献】1沈

32、峻威,叶强,文连国.一种低成本高精度多GNSS定位装置设计J.中国计量大学学报,2 0 2 2,33(3):345-351.SHENJ W,YE Q,WEN L G,Design of a low cost highprecision muti GNSS positioning deviceJJ.Journal of ChinaUniversity of Metrology,2022,33(3):345-351.2王瑞宝,王节旺,潘德祥,美国防部及海军装备计量军用标准、规范研究和启示 J.中国计量大学学报,2 0 2 2,33(3):373-378.WANG R B,WANG J W,PAN

33、D X.Research and en-lightenment on the military standards and specifications ofmetrology support for military equipment for U.S.depart-ment of defence and U.S.navyLJJ.Journal of China Uni-versity of Metrology,2022,33(3):373-378.3易见为,苏志龙,关棒磊,等.野外大视场双目像机外参数自标定方法 J.实验力学,2 0 2 2,37(6):7 7 5-7 8 3.YI J W

34、,SU Z L,GUAN B L,et al.Self calibration meth-od for external parameters of binocular cameras with largefield of viewJJ.Journal of Experimental Mechanics,2022,37(6):775-783.4MAJARENA A C,SANTOLARIA J,SAMPER D,et al.Analysis and evaluation of objective functions in kinematiccalibration of parallel mec

35、hanismsJJ.Manufacturing Tech-nology,2013(66):751-761.5AGUADO S,SANTOLARIA J,SAMPER D,et al.Studyof self-calibration and multilateration in machine tool volu-metric verification for laser tracker error reductionJ.Pro-ceedings of the Institution of Mechanical Engineers Part BJournal of Engineering Man

36、ufacture,2013,228(7):659-672.6NUBIOLA A,SLAMANI M,JOUBAIR A,et al.Com-parison of two calibration methods for a small industrial ro-bot based on an optical CMM and a laser trackerJJ.Robot-ica:International Journal of Information,Education and Re-search in Robotics and Artificial Intelligence,2014,32(

37、3):447-466.陈雨婷等:基于标准距离端点数据重组的标定优化方法Sinica,2019,40(1):64-70.13李笑宇,林虎,薛梓,等.激光跟踪多边测量自标定优化方法 J.仪器仪表学报,2 0 2 1,42(2):10-17.LI X Y,LIN H,XUE Z,et al.Self-calibration optimiza-tion method for laser tracking multilateral measurementJ.Chinese Journal of Scientific Instrument,2021,42(2):10-17.14张红英,余晓芬,王标.大空间

38、坐标测量网络的现场实时标定方法 J.计量学报,2 0 18,39(1):1-5.ZHANG H Y,YU X F,WANG B.Onsite and timely cal-ibration of the large scale coordinate measuring networkJ.Acta Metrological Sinica,2018,39(1):1-5.15刘青,张杰,刘志刚,等.旋转激光大空间定位系统的参数标定技术研究 J.激光杂志,2 0 2 0,41(6):2 2-2 5.LIU Q,ZHANG J,LIU Z G,et al.Research on parame-ter c

39、alibration of rotary-laser large space positioning sys-temLJJ.Laser Journal,2020,41(6):22-25.16刘红光,张宏,石邦凯,等.一种基于二维平面靶标的线结构光标定方法 J.应用激光,2 0 2 2,42(8):12 9-138.LIU H G,ZHANG H,SHI B K,et al.A linear struc-tured light calibration method based on 2D planar targetJ.Applied Laser,2022,42(8):129-138.3637 C

40、ONTE J,MAJARENA A C,AGUADO S,et al.Cali-bration strategies of laser trackers based on network meas-urementsJ.International Journal of Advanced Manufactur-ing Technology,2016,83(5-8):1161-1170.8SUN T,XING F,YOU Z.Optical system error analysisand calibration method of high-accuracy star trackersJ.Sens

41、ors,2013,13(4):4598-4623.9WAN A,WANG Y,XUE G,et al.Accuratekinematicscalibration method for a large-scale machine toolJJ.IEEETransactions on Industrial Electronics,2020,68(10):9832-9843.10林永兵,张国雄,李真,等.四路激光跟踪干涉三维坐标测量系统自标定与仿真J.仪器仪表学报,2 0 0 3(2):2 0 5-210.LIN Y B,ZHANG G X,LI Z,et al.Self-calibration a

42、ndsimulation of the four-beam laser tracking interferometersystem for 3D coordinate measurementJJ.Chinese Journalof Scientific Instrument,2003(2):205-210.11缪东晶,李建双,郑继辉,等.基于多边法的大尺寸位姿测量系统的自标定算法与仿真研究 J.计量学报,2 0 17,38(1):70-75.MIAO D J,LIJ S,ZHENGJ H,et al.Study on self-cali-bration algorithm and simula

43、tion for large-scale posturemeasurement system based on multilateral methodJJ.Ac-ta Metrological Sinica,2017,38(1):70-75.12郑继辉,缪东晶,李建双,等.采用标准长度的激光多边法坐标测量系统自标定算法 J.计量学报,2 0 19,40(1):6 4-7 0ZHENGJ H,MIAO D J,LI J S,et al.Self-calibrationalgorithm for laser multilateral coordinate measurementsystem using standard length methodEJI.Acta Metrological

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服