ImageVerifierCode 换一换
格式:PDF , 页数:43 ,大小:606.52KB ,
资源ID:2125926      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2125926.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020年小升初数学专项训练讲义.pdf)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020年小升初数学专项训练讲义.pdf

1、第 1 页 共 43 页2020 年小升初数学年小升初数学专项训练专项训练第一讲 小升初专项训练 计算篇一、小升初考试热点及命题方向 计算是小学数学的基础,近几年的试卷又以考察分数的计算和巧算为明显趋势(分值大体在6 分15 分),学生应针对两方面强化练习:一 分数小数混合计算;二 分数的化简和简便运算;二、考试常用公式以下是总结的大家需要了解和掌握的常识,曾经在重要考试中用到过。1基本公式:21321nnn2、612121222nnnn讲解练习:201932211921192112222原式nnnnan3、412121222333nnnn4、131171001abcabcabcabc6006

2、610016131177877 如:讲解练习:200720062006-200620072007=_.5、bababa22讲解练习:8-7+6-5+4-3+2-1 _.222222226、742851.071428571.072讲解练习:化成小数后,小数点后面第 2007 位上的数字为_。71 化成小数后,小数点后若干位数字和为 1992,问 n=_。7n7、1+2+3+4(n-1)+n+(n-1)+4+3+2+1=n28 121111112321111111112345654321111112第 2 页 共 43 页9、111111111912345679讲解练习:5555555550501

3、111111115091234567945012345679四、典型例题解析1 分数,小数的混合计算【例 1】(76)2(42)1.35185151115141514【例 2】)19956.15.019954.01993(22.550276951922.5109395192庞大数字的四则运算 【例 3】19+199+1999+=_。919999991个【例 4】352551855612590921934833344807第 3 页 共 43 页3庞大算式的四则运算(拆分和裂项的技巧)【例 5】42012020141213612211【例 6】42133011209127657653【例 7】2

4、11561510510646333124繁分数的化简【例 8】已知 ,那么 x=_.1811111214x5 换元法的运用【例 9】19991312120001312112000131211999131211第 4 页 共 43 页6 其他常考题型【例 10】小刚进行加法珠算练习,用 123,当数到某个数时,和是 1000。在验算时发现重复加了一个数,这个数是。【拓展】小明把自己的书页码相加,从 1 开始加到最后一页,总共为 1050,不过他发现他重复加了一页,请问是页。作业题 1 2、3914848)5246.5(402323153236148149861497414939474583587

5、392073789474583587391266212073789474583587399474583587391266214有一串数它的前 1996 个数的和是多少?、4241333231222111第 5 页 共 43 页5、将右式写成分数21212121第二讲 小升初专项训练 几何篇(一)1小升初考试热点及命题方向几何问题是小升初考试的重要内容,分值一般在 12-14 分(包含 1 道大题和 2 道左右的小题)。尤其重要的就是平面图形中的面积计算,几何从内容方面,可以简单的分为直线形面积(三角形四边形为主),圆的面积以及二者的综合。其中直线形面积近年来考的比较多,值得我们重点学习。从解题

6、方法上来看,有割补法,代数法等,有的题目还会用到有关包含与排除的知识。2典型例题解析1 等积变换在三角形中的运用首先我们来讨论一下和三角形面积有关的问题,大家都知道,三角形的面积=1/2底高因此我们有【结论 1】等底的三角形面积之比等于对应高的比【结论 2】等高的三角形面积之比等于对应底的比【例 1】如图,四边形 ABCD 中,AC 和 BD 相交于 O 点,三角形 ADO 的面积=5,三角形 DOC的面积=4,三角形 AOB 的面积=15,求三角形 BOC 的面积是多少?【例 2】将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为 2:3。已知右图中 3 个阴影

7、的三角形面积之和为 1,那么重叠部分的面积为多少?第 6 页 共 43 页燕尾定理在三角形中的运用 下面我们再介绍一个非常有用的结论:【燕尾定理】:在三角形 ABC 中,AD,BE,CF 相交于同一点 O,那么 SABO:SACO=BD:DC 【例 3】在ABC 中=2:1,=1:3,求=?DCBDECAEOEOB2 差不变原理的运用【例 4】左下图所示的ABCD 的边 BC 长 10cm,直角三角形 BCE 的直角边 EC 长 8cm,已知两块阴影部分的面积和比EFG 的面积大 10cm2,求 CF 的长。【例 5】如图,已知圆的直径为 20,S1-S2=12,求 BD 的长度?第 7 页

8、共 43 页3 利用“中间桥梁”联系两块图形的面积关系【例 6】如图,正方形 ABCD 的边长是 4 厘米,CG=3 厘米,矩形 DEFG 的长 DG 为 5 厘米,求它的宽 DE 等于多少厘米?【例 7】如下图所示,四边形 ABCD 与 DEFG 都是平行四边形,证明它们的面积相等。4 其他常考题型【例 8】用同样大小的 22 个小纸片摆成下图所示的图形,已知小纸片的长是 18 厘米,求图中阴影部分的面积和。第 8 页 共 43 页拓展提高:下图中,五角星的五个顶角的度数和是多少?作业题1、如右图所示,已知三角形 ABC 面积为 1,延长 AB 至 D,使 BD=AB;延长 BC 至 E,使

9、CE=2BC;延长 CA 至 F,使 AF=3AC,求三角形 DEF 的面积。2、如图,在三角形 ABC 中,D 为 BC 的中点,E 为 AB 上的一点,且 BE=AB,已知四边形13EDCA 的面积是 35,求三角形 ABC 的面积.3、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30 公顷,问图中阴影部分的面积是多少?4、图中 AB=3 厘米,CD=12 厘米,ED=8 厘米,AF=7 厘米.四边形 ABDE 的面积是多少平方厘米 5、三角形 ABC 中,C 是直角,已知 AC2,CD2,CB=3,AM=BM,那么三角形 AMN(阴影部分)的面

10、积为多少?第 9 页 共 43 页第三讲 小升初专项训练 几何篇(二)一、小升初考试热点及命题方向圆和立体几何近两年虽然不是考试热点,但在小升初考试中也会时常露面。因为立体图形考察学生的空间想象能力,可以反映学生的本身潜能;而另一方面,初中很多知识点都是建立在空间问题上,所以可以说学校考察立体也是为初中选拔知识链接性好的学生。二、典型例题解析1 与圆和扇形有关的题型【例 1】如下图,等腰直角三角形 ABC 的腰为 10 厘米;以 A 为圆心,EF 为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。求扇形所在的圆面积。【例 2】草场上有一个长 20 米、宽 10 米的关闭着的羊圈,在羊圈的一角用

11、长 30 米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?【例 3】如图,ABCD 是正方形,且 FA=AD=DE=1,求阴影部分的面积。(取 3)第 10 页 共 43 页与立体几何有关的题型 小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下。见下图。2 求不规则立体图形的表面积与体积【例 4】用棱长是 1 厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?【例 5】如图是一个边长为 2 厘米的正方体。在正方体的上面的正中向下挖一个边长为

12、1 厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为 1/2 厘米的小洞;第三个小洞的挖法与前两个相同,边长为 1/4 厘米。那么最后得到的立体图形的表面积是多少平方厘米?第 11 页 共 43 页3 水位问题【例 6】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图已知它的容积为 26.4 立方厘米当瓶子正放时,瓶内的酒精的液面高为 6 厘米瓶子倒放时,空余部分的高为 2 厘米问:瓶内酒精的体积是多少立方厘米?合多少升?【例 7】一个高为 30 厘米,底面为边长是 10 厘米的正方形的长方体水桶,其中装有容积的水,21现在向桶中投入边长为 2 厘米2 厘米3 厘米的长方体石块,问需

13、要投入多少块这种石块才能使水面恰与桶高相齐?4 计数问题【例 8】右图是由 22 个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?第 12 页 共 43 页拓展提高:有甲、乙、丙 3 种大小的正方体,棱长比是 1:2:3。如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?作业题1、右上图中每个小圆的半径是 1 厘米,阴影部分的周长是_厘米.(3.14)2、求下图中阴影部分的面积:3、如右图,将直径 AB 为 3 的半圆绕 A 逆时针旋转 60,此时 AB 到达 AC的位置,求阴影部分的面积(取=3).4、有

14、一个正方体,边长是 5.如果它的左上方截去一个边长分别是5、3、2 的长方体(如下图),求它的表面积减少的百分比是多少?5、如下图,在棱长为 3 的正方体中由上到下,由左到右,由前到后,有三个底面积是 1 的正方形高为 3 的长方体的洞,求所得形体的表面积是多少?第 13 页 共 43 页第四讲 小升初专项训练 行程篇(一)一、小升初考试热点及命题方向行程问题是历年小升初的考试重点,各学校都把行程当压轴题处理,可见学校对行程的重视程度,由于行程题本身题干就很长,模型多样,变化众多,所以对学生来说处理起来很头疼,而这也是学校考察的重点,这可以充分体现学生对题目的分析能力。二、基本公式【基本公式】

15、:路程速度时间【基本类型】相遇问题:速度和相遇时间相遇路程;追及问题:速度差追及时间路程差;流水问题:关键是抓住水速对追及和相遇的时间不产生影响;顺水速度船速水速 逆水速度船速水速 静水速度(顺水速度逆水速度)2 水速(顺水速度逆水速度)2 (也就是顺水速度、逆水速度、船速、水速 4 个量中只要有 2 个就可求另外 2 个)其他问题:利用相应知识解决,比如和差分倍和盈亏;【复杂的行程】1、多次相遇问题;2、环形行程问题;3、运用比例、方程等解复杂的题;三、典型例题解析1 典型的相遇问题【例 1】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度

16、增加 2 米秒,乙比原来速度减少 2 米秒,结果都用 24 秒同时回到原地。求甲原来的速度。第 14 页 共 43 页【例 2】小红和小强同时从家里出发相向而行。小红每分走 52 米,小强每分走 70 米,二人在途中的 A 处相遇。若小红提前 4 分出发,且速度不变,小强每分走 90 米,则两人仍在 A 处相遇。小红和小强两人的家相距多少米?【例 3】甲、乙两车分别从 A、B 两地同时出发相向而行,6 小时后相遇在 C 点。如果甲车速度不变,乙车每小时多行 5 千米,且两车还从 A、B 两地同时出发相向而行,则相遇地点距 C 点 12千米,如果乙车速度不变,甲车每小时多行 5 千米,且两车还从

17、 A、B 两地同时出发相向而行,则相遇地点距 C 点 16 千米。甲车原来每小时向多少千米?2 典型的追及问题【例 4】在 400 米的环行跑道上,A,B 两点相距 100 米。甲、乙两人分别从 A,B 两点同时出发,按逆时针方向跑步。甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停 10 秒钟。那么甲追上乙需要时间是多少秒?3 多次折返的行程问题【例 5】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5 倍,而且甲比乙速度快。两人出发后 1 小时,甲与乙在离山顶 600 米处相遇,当乙到达山顶时,甲恰好到半山腰。那么甲回到出发

18、点共用多少小时?第 15 页 共 43 页4 流水行船问题关键是抓住水速对追及和相遇的时间不产生影响;顺水速度船速水速 逆水速度船速水速 静水速度(顺水速度逆水速度)2 水速(顺水速度逆水速度)2 必须熟练运用:水速顺度、逆水速度、船速、水速 4 个量中只要有 2 个量求另外 2 个量公式推导:【例 6】一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行120 千米也用 16 时。求水流的速度。【例 7】某河有相距 45 千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4

19、 分钟后与甲船相距 1千米,预计乙船出发后几小时可与此物相遇。【例 8】一只小船从甲地到乙地往返一次共用 2 时,回来时顺水,比去时每时多行驶 8 千米,因此第 2 时比第 1 时多行驶 6 千米。求甲、乙两地的距离。第 16 页 共 43 页作业题1、在环形跑道上,两人都按顺时针方向跑时,每 12 分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔 4 分钟相遇一次,问两人各跑一圈需要几分钟?2、甲、乙、丙三人行路,甲每分钟走 60 米,乙每分钟走 67.5 米,丙每分钟走 75 米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过 2 分钟与甲相遇,求东西

20、两镇间的路程有多少米?3、甲、乙同时从 A,B 两地相向走来。甲每时走 5 千米,两人相遇后,乙再走 10 千米到 A 地,甲再走 1.6 时到 B 地。乙每时走多少千米?4 千米。4、甲、乙两车同时从 A,B 两地相向而行,它们相遇时距 A,B 两地中心处 8 千米,已知甲车速度是乙车的 1.2 倍,求 A,B 两地的距离。5、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3 小时后,客车到达甲城,货车离乙城还有 30 千米已知货车的速度是客车的,甲、乙两城相距多少千米?43 第五讲 小升初专项训练 行程篇(二)一、小升初考试热点及命题方向第 17 页 共 43 页多次相遇

21、的行程问题是近两年来各个重点中学非常喜爱的出题角度,这类题型往往需要学生结合六年级所学习的比例知识和分数百分数来分析题干条件,考查内容较为全面。二、基本公式【基本公式】:路程速度时间【基本类型】相遇问题:速度和相遇时间相遇路程;追及问题:速度差追及时间路程差;流水问题:关键是抓住水速对追及和相遇的时间不产生影响;顺水速度船速水速 逆水速度船速水速 静水速度(顺水速度逆水速度)2 水速(顺水速度逆水速度)2 (也就是顺水速度、逆水速度、船速、水速 4 个量中只要有 2 个就可求另外 2 个)其他问题:利用相应知识解决,比如和差分倍和盈亏;【复杂的行程】1、多次相遇问题;2、环形行程问题;3、运用

22、比例、方程等解复杂的题;三、典型例题解析1 直线型的多次相遇问题如果甲乙从 A,B 两点出发,甲乙第 n 次迎面相遇时,路程和为全长的 2n-1 倍,而此时甲走的路程也是第一次相遇时甲走的路程的 2n-1 倍(乙也是如此)。【例 1】湖中有 A,B 两岛,甲、乙二人都要在两岛间游一个来回。两人分别从 A,B 两岛同时出发,他们第一次相遇时距 A 岛 700 米,第二次相遇时距 B 岛 400 米。问:两岛相距多远?公式需牢记 做题有信心!总结:若两人走的一个全程中甲走总结:若两人走的一个全程中甲走 1 1 份份 M M 米,米,则两人走则两人走 3 3 个全程中甲就走个全程中甲就走 3 3 份

23、份 M M 米。米。第 18 页 共 43 页【例 2】甲、乙二人分别从 A、B 两地同时相向而行,乙的速度是甲的,二人相遇后继续行进,32甲到 B 地、乙到 A 地后立即返回。已知二人第二次相遇的地点距第一次相遇的地点是 20 千米,那么,A、B 两地相距千米。2 环形跑道的多次相遇问题 【例 3】在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过 4 分甲到达 B 点,又过 8 分两人再次相遇。甲、乙环行一周各需要多少分?。【例 4】右图中,外圆周长 40 厘米,画阴影部分是个“逗号”,两只蚂蚁分别从 A,B 同时爬行。甲蚂蚁从 A 出发,沿“逗号”四周顺时

24、针爬行,每秒爬 3 厘米;乙蚂蚁从 B 出发,沿外圆圆周顺时针爬行,每秒爬行 5 厘米。两只蚂蚁第一次相遇时,乙蚂蚁共爬行了多少米?3 与分数百分数相结合的行程问题【例 5】一辆车从甲地开往乙地。如果车速提高 20%,可以比原定时间提前一小时到达;如果以原速行驶 120 千米后,再将车速提高 25%,则可以提前 40 分钟到达。那么甲乙两地相距多少第 19 页 共 43 页千米?【例 6】学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校。已知他们的步行速度平地为 4 千米时,上山为 3 千米时,下山为 6 千米时。问:他们一共走了多少路?作业题1

25、、客车和货车同时从甲、乙两地相向开出,客车行完全程需 10 时,货车行完全程需 15 时。两车在中途相遇后,客车又行了 90 千米,这时客车行完了全程的 80,求甲、乙两地的距离。2、甲、乙两车分别从 A、B 两地出发,相向而行。出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少 20%,乙的速度增加 20%,这样,当甲到达 B 地时,乙离 A 地还有 10 千米。那么A、B 两地相距多少千米?3一位少年短跑选手,顺风跑 90 米用了 10 秒钟,在同样的风速下,逆风跑 70 米,也用了 10秒钟。问:在无风的时候,他跑 100 米要用多少秒?第 20 页 共 43 页4甲、乙两人同时从山

26、脚开始爬山,到达山顶后就立即下山。他们两人下山的速度都是各自上山速度的 2 倍。甲到山顶时,乙距山顶还有 400 米;甲回到山脚时,乙刚好下到半山腰。求从山脚到山顶的距离。5、甲,乙两人在一条长 100 米的直路上来回跑步,甲的速度 3 米/秒,乙的速度 2 米/秒。如果他们同时分别从直路的两端出发,当他们跑了 10 分钟后,共相遇多少次?6、如图,ABCD是一个边长为6米的模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?第六讲 小升初专项训练 找规律篇一、小升初考试热点及命题方向 找规律问题在小

27、升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。在刚刚结束的 14 年小升初选拔考试中,一八、经纬、郑州中学偶有考察。第 21 页 共 43 页二、典型例题解析1 与周期相关的找规律问题【例 1】化小数后,小数点后若干位数字和为 1992,求 n 为多少?7n【例 2】、观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321用你所发现的规律写出的末位数字是_。200432 图表中的找规律问题【例 3】自然数如下表的规则排列:求:(1)上起第 10 行,左起第 13 列的数;(2)数 127 应排在上起第几行,左起第几列?【例 3】下

28、面是三行按不同规律排列的,那么当=32 时,+=_.CBA,ABC第 22 页 共 43 页【例 4】用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第个图形中需要黑色瓷砖 块(用含 n 的代数式表示).3 较复杂的数列找规律【例 5】下面两个多位数 1248624、6248624,都是按照如下方法得到的:将第一位数字乘以 2,若积为一位数,将其写在第 2 位上,若积为两位数,则将其个位数字写在第 2 位。对第2 位数字再进行如上操作得到第 3 位数字,后面的每一位数字都是由前一位数字进行如上操作得到的。当第 1 位数字是 3 时,仍按如上操作得到一个多

29、位数,则这个多位数前 100 位的所有数字之和是多少?【例 6】数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。那么,第 1 年它只有主干,第 2 年有两枝,问 15 年后这棵树有多少分枝(假设没有任何死亡)?【例 7】把棱长为的正方体摆成如图的形状,从上向下数,第一层 1 个,第二层 3 个按这a种规律摆放,第五层的正方体的个数是 A246810B1591317C25101726第 23 页 共 43 页【例 8】下面是按规律列的三角形数阵:1 1 1 1 2 1 1 3

30、 3 1 1 4 6 4 1 1 5 10 10 5 1 那么第 1999 行中左起第三个数是_.【例 9】一串分数:其中的第 2000 个1 2 1 2 3 4 1 2 3 4 5 6 1 28 12,.,.,3 3,5 5 5 5 7 7 7 7 7 7 9 99 11 11分数是 .拓展提升:小明每分钟吹-次肥皂泡,每次恰好吹出 100 个.肥皂泡吹出之后,经过 1 分钟有-半破了,经过 2 分钟还有没有破,经过 2 分半钟全部肥皂泡都破了小明在第 20 次吹出 100 个201新的肥皂泡的时候,没有破的肥皂泡共有 个.作业题1、有一堆火柴共 10 根,如果规定每次取 13 根,那么取完

31、这堆火柴共有多少种不同取法?第 24 页 共 43 页2已知一串有规律的数:1,2/3,5/8,13/21,34/55,。那么,在这串数中,从左往右数,第 10个数是_。3、用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加 1 的规律拼成一列图案:321(1)第 4 个图案中有白色纸片 张;(2)第 n 个图案中有白色纸片 张.4、如图所示,在正六边形周围画出 6 个同样的正六边形(阴影部分),围成第 1 圈;在第 1 圈外A面再画出 12 个同样的正六边形,围成第 2 圈;.按这个方法继续画下去,当画完第 9 圈时,图中共有_个与 A 相同的正六边形.5、用火柴棒按下图中的方式搭图形,按照这种

32、方式搭下去,搭第个图形需_根火n柴棒 6、一个人从中央(标有 0)的位置出发,向东、向北各走 1 千米,再向西、向南各走 2 千米,再向东、向北走 3 千米,向西、向南各走 4 千米,如此继续下去.他每走 1 千米,就把所走的路程累计数标出(如图),当他走到距中央正东 100 千米处时,他共走了_千米.第七讲 小升初专项训练 工程篇一、小升初考试热点及命题方向罗巴切夫斯基是俄国数学家。曾经有一位承包商向他请教过一个工程问题:(第一个图形)(第二个图形)(第三个图形)第 25 页 共 43 页某项工程,若甲、乙单独去做,甲比乙多用 4 天完成;若甲先做 2 天后,再和乙一起做,则共用 7 天可完

33、成,问甲、乙两人单独做此工程各需多少天完成?答案:设甲、乙两人每人完成该项工程的一半,以题意,甲、乙两人单独完成,甲比乙多用 4 天,所以每人单独完成一半时,甲比乙多用 2 天。另外,已知甲先做 2 天,然后与乙合作,7 天完成,这就是说,甲、乙共同完成全部工作时(每人做一半),相差刚好 2 天,那么很明显,甲在 7 天中正好完成了工程的一半,而乙在 5 天中也完成了工程的一半。这样,甲单独完成要 14 天,乙单独完成要 10 天。工程问题在历届考试中之所以难,是因为工程问题中比例和单位“1”综合。还有就是学生欠缺一些固定的条件的理解和转化能力。二、知识要点在工程问题中,一般要出现三个量:工作

34、总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。【基本公式】:这三个量之间有下述一些关系式:工作效率工作时间工作总量;工作总量工作时间工作效率;工作总量工作效率工作时间。为叙述方便,把这三个量简称工量、工时和工效。三、典型例题解析1 涉及二者的工程问题【例 1】一项工程,甲单独做 6 天完成,乙单独做 12 天完成。现两人合作,途中乙因病休息了几天,这样用了 4.5 天才完成任务。乙因病休息了几天?【例 2】一项工程,甲、乙两人合作 4 天后,再由乙单独做 5 天完成,已知甲比乙每天多完成这项工程的。甲、乙单独做这项工程各需要几天?130深刻理解公式的用深刻理解公

35、式的用法法!第 26 页 共 43 页【例 3】某项工程,甲单独做需要 20 天,如果与乙合作,12 天就可以完成。现在由甲单独做 16天,然后由乙继续做完,还需要几天时间?2 涉及三者的工程问题 【例 4】一项工程,甲队单独做 24 天完成,乙队单独做 30 天完成。现在甲、乙两队先合做 8 天,剩下的由丙队单独做了 6 天完成了此项工程。如果从开始就由丙队单独做,需要几天?3 涉及多者的工程问题【例 5】一项工程,45 人可以若干天完成。现在 45 人工作 6 天后,调走 9 人干其他工作。这样,完成这项工程就比原来计划多用了 4 天。原计划完成这项工程用多少天?4 水箱注水的工程问题【例

36、 6】水池安装 A、B、C、D、E 五根水管,有的专门放水,有的专门进水。如果每次用两根水管同时工作,注满一池水所用时间如下表所示:A,BC,DE,AD,EB,C2610315如果选用一根水管注水,要尽快把空池注满,问应选用哪根水管?【例 7】有甲、乙两根水管,分别同时给两个大小相同的水池 A 和 B 注水,在相同时间内甲、乙两管注水量之比 7:5。经过时,A、B 两池中已注入水之和恰好是一池水。此后,甲管的注312第 27 页 共 43 页水速度提高 25,乙管的注水速度降低 30。当甲管注满 A 池时,乙管还需多长时间注满 B池?【拓展】“牛吃草”问题例题选讲:有一片牧场,草每天匀速生长,

37、如果牧民在此放 24 只羊,则 6 天吃完草;如果放牧21 只羊,则 8 天吃完,每天吃草的量都是相等的问:1、如果放牧 16 只羊,则几天可以吃完牧草?2、要是牧草永远吃不完,最多放几只羊?作业题1、某工程限期完成,甲队单独做正好按期完成,乙队单独做误期 3 天才能完成,现在两队合作2 天后,余下的工程再由乙队独做,也正好按期完成。那么该工程限期是多少天?2、一批零件,张师傅独做 20 时完成,王师傅独做 30 时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做 60 个零件。这批零件共有多少个?3、某项工程,甲单独做需要 20 天,如果与乙合作,12 天就可以完成。现在由甲单独做 1

38、6 天,然后由乙继续做完,还需要几天时间?4、甲、乙二人同时开始加工一批零件,每人加工零件总数的一半,甲完成任务的 1/3 时乙加工了 50 个零件,甲完成 3/5 时乙完成了一半。问:这批零件共多少个?第八讲 小升初专项训练 比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主第 28 页 共 43 页要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现。二、知识要点分数百分数应用题比和比例 经济浓度三、典型例题解析1 分数百分数应用题【例 1】某班有学生 48 人,女生占全班的 37.5

39、,后来又转来女生若干人,这时人数恰好是占全班人数的 40,问转来几名女生?【例 2】把一个正方形的一边减少 20,另一边增加 2 米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?2 比和比例 【例 3】一个长方形长与宽的比是 14:5,如果长减少 13 厘米,宽增加 13 厘米,则面积增加 182平方厘米,那么原长方形面积是多少平方厘米?第 29 页 共 43 页【例 4】某学校入学考试,参加的男生与女生人数之比是 43.结果录取 91 人,其中男生与女生人数之比是 85.未被录取的学生中,男生与女生人数之比是 34.问报考的共有多少人?3 经济浓度问题【例 5】某商店进了

40、一批笔记本,按 30的利润定价.当售出这批笔记本的 80后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【例 6】仓库运来含水量为 90的一种水果 100 千克。一星期后再测,发现含水量降低到 80。现在这批水果的质量是多少千克?【例 7】甲、乙两车从 A、B 两地同时相对开出,当甲车到达两地中点时,乙车离中点还有 20 千米,如果甲、乙两车的速度的比是 5:4,A、B 两城相距多少千米?【例 8】制鞋厂生产的皮鞋按质量共分 10 个档次,生产最低档次(即第 1 档次)的皮鞋每双利润为 24 元。每提高一个档次,每双皮鞋利润增加 6 元。最低档次的皮

41、鞋每天可生产 180 双,提高一个档次每天将少生产 9 双皮鞋。按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?第 30 页 共 43 页作业题1、成本 0.25 元的练习本 1200 本,按 40的利润定价出售。当销掉 80后,剩的练习本打折扣出售,结果获得的利润是预定的 86,问剩下的练习本出售时是按定价打了什么折扣?2、甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙 20 本,那么乙比甲14多的数量恰好是两人总数的。那么他们共有多少本书?163、100 千克刚采下的鲜蘑菇含水量为 99%,稍微晾晒后,含水量下降到 98%,那么这 100 千克的蘑菇现在还有多少

42、千克呢?4、甲、乙两车从 A、B 两地同时相对开出,当甲车行了全程时,乙车行了 16 千米;当甲车到31达 B 地时,乙车行了全程的。A、B 两城相距多少千米?54 第九讲 小升初专项训练 数论篇一、小升初考试热点及命题方向数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重第 31 页 共 43 页要性是不言而喻的

43、。二、基本知识三、典型例题解析【例 1】某班学生不超过 60 人,在一次数学测验中,分数不低于 90 分的人数占,得 8089 分71的人数占,得 7079 分得人数占,那么得 70 分以下的有_人。2131【例2】从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?【例3】一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?【例 4】03 年 101 中学招生人数是

44、一个平方数,04 年由于信息发布及时,04 年的招生人数比 03年多了 101 人,也是一个平方数,问 04 年的招生人数?【例 5】一个数减去 100 是一个平方数,减去 63 也是一个平方数,问这个是多少?第 32 页 共 43 页【例 6】+=。21121212022121212113131313212121505【例 7】一个数除以 3 余 2,除以 5 余 3,除以 7 余 4,问满足条件的最小自然数_.【例 8】有15位同学,每位同学都有编号,它们是1号到15号。1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,依次下去,每位同学都说,这个数能被他的

45、编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数。(写出解题过程)作业题1、除以 13 所得余数是_.220002222个2、从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?3在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成10等份,第二种刻度线把木棍分第 33 页 共 43 页成12等份,第三种刻度线把木棍分成15等份,如果沿每条刻度线把木棍锯断,木棍总共被锯成多少段?4、教室里面有标有1到200的标号200盏灯,每个灯小面站了一个

46、小朋友,他们的背后都标上1到200的数字,然后依次让小朋友按下是他们倍数的灯的开关;假设刚开始灯都是开着的那么所有人按完后有几盏灯是亮的的?第十讲 小升初名校真题专项测试-列方程解应用题一、小升初考试热点及命题方向 应用题是数学和实际联系最密切的问题,它的内容丰富,形式多样,是培养学生分析能力和解决问题能力的重要内容,14 年小升初考试郑州各个名校在次章节考察较多。列方程解应用题就是常用的方法之一。列方程解应用题的一般步骤是:二、典型例题解析【例 1】)3(5x)1(27x)212(21)58(41xx【例 2】解方程:5364xx1)23(5)14(3)12(7xxx 第 34 页 共 43

47、 页 243146xx34524xx【例 3】商店在销售二种售价一样的商品时,其中一件盈利 25%,另一件亏损 25%,卖这两件商品总的是盈利还是亏损.【例 4】某化肥厂装运一批化肥,如果每辆车装 7 吨,这批化肥就有 2 吨不能运走;如果每辆车装 8 吨,则装完这批化肥后,还可以装其它货物 2 吨。问:这批化肥有多少吨?【例 5】甲队人数是乙队人数的 2 倍,从甲队调 12 人到乙队后,甲队剩下来的人数是原乙队人数的一半还多 15 人。求甲、乙两队原有人数各多少人?【例 6】有一个三位数,个位数字为百位数字的 2 倍,十位数字比百位数字大 1,若将此数个位与百位顺序对调(个位变百位)所得的新

48、数比原数的 2 倍少 49,求原数。【例 7】某车间有 28 名工人生产螺栓和螺母,每人每小时平均能生产螺栓 12 个或螺母 18 个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?第 35 页 共 43 页【例 8】朝阳建筑公司有甲乙两种型号的水泥,甲种水泥的数量是乙种水泥数量的 3 倍,计划修建住宅若干套。如果每套住宅使用甲种水泥 70 袋,乙种水泥 20 袋,那么,甲种水泥缺少 10 袋,乙种水泥 30 袋。问:“朝阳建筑公司计划修建多少套住宅?”【例 9】有一队工人搬一堆砖,每人搬 7 块,还剩 12 块,每人搬 8 块,最后一人只搬 4 块,这队工人

49、共有多少人?、【例 10】甲、乙两车间各有工人若干,如果从乙车间调 100 人到甲车间,那么甲车间的人数是乙车间剩余人数的 6 倍;如果从甲车间调 100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。作业题1、有一队工人搬一堆砖,每人搬 7 块,还剩 12 块,每人搬 8 块,最后一人只搬 4 块,这队工人共有多少人?2、两个水池共贮水 45 吨,甲池注进 6 吨,乙池放出 9 吨,甲池水的吨数与乙池水的吨数相等,两个水池原来各贮水多少吨?第 36 页 共 43 页3、小刚和小明参加一个会议,在会议室中小刚看到不戴眼镜的同学是戴眼镜同学的 2 倍,小明看到戴眼镜的同学是不戴眼镜的,

50、会议室中共有多少名同学?324、某商店想进饼干和巧克力共 444 千克,后又调整了进货量,使饼干增加了 20 千克,巧克力减少 5%,结果总数增加了 7 千克。那么实际进饼干多少千克?(02 年人大附中入学测试题)5、某城市规定:出租车起步价允许行驶的最远路程为 3 千米,超过 3 千米的部分按每千米另收费.甲说:“我乘这种出租车走了 11 千米,付了 17 元”;乙说:“我乘这种出租车走了 23 千米,付了 35 元”.请你算一算这种出租车的起步价是多少元?以及超过 3 千米后,每千米的车费是多少元?第十一讲 小升初专项训练 计数原理篇1小升初考试热点及命题方向“数学来源自生活又高于生活”,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服