ImageVerifierCode 换一换
格式:DOC , 页数:35 ,大小:1,007KB ,
资源ID:2110894      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2110894.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级上册一元二次方程教案.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级上册一元二次方程教案.doc

1、精品教育单元名称第二十二章 一元二次方程单元教学目标 1、了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题 2、通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型根据数学模型恰如其分地给出一元二次方程的概念 3、结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等 4、通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程 5、通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式

2、,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0,即(m-4)2+10不论m取何值,该方程都是一元二次方程学法指导 多思、勤思,随听随思; ,善于大胆提出问题; 由听和观察去联想、猜想、归纳; 树立批判意识,学会反思。作业一、选择题 1在下列方程中,一元二次方程的个数是( ) 3x2+7=0 ax2+bx+c=0 (x-2)(x+5)=x2-1 3x2-=0 A1个 B2个 C3个 D4个 2方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ) A2,3,-6 B2,-3,18 C2,-3,6 D2,3,6 3px2-3x+p2-q=0是关

3、于x的一元二次方程,则( ) Ap=1 Bp0 Cp0 Dp为任意实数二、填空题 1方程3x2-3=2x+1的二次项系数为_,一次项系数为_,常数项为_ 2一元二次方程的一般形式是_ 3关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_ 三、综合提高题 1a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程? 2关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么? 3一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的: 设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0小明列出

4、方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:x1234x2-3x-1-3-3 所以,_x_第二步: x3.13.23.33.4x2-3x-1-0.96-0.36 所以,_x_ (1)请你帮小明填完空格,完成他未完成的部分; (2)通过以上探索,估计出矩形铁片的整数部分为_,十分位为_答案:一、1A 2B 3C二、13,-2,-4 2ax+bx+c=0(a0) 3a1三、1化为:ax2+(a-+1)x+1=0,所以,当a0时是一元二次方程 2可能,因为当,当m=1时,该方程是一元二次方程 3(1)-1,3,3,4,-0.01,0.36,3.3,3.4 (2)3,3布置作业 1教

5、材P28 习题221 1、2 2选用作业设计板书设计221一元二次方程(一)1、一元二次方程的定义:2、一元二次方程的一般形式:ax2+bx+c=0(a0)3、例题1、2讲解4、教材P27 练习1、2的训练及讲解5、小结:6、课外作业:课后反思课题221 一元二次方程(二)教材和学情分析本节课在学生已经掌握了一元二次方程的概念及一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项的系数,一次项、一次项的系数,常数项的概念的基础上,从生活中的方程入手,探索一元二次方程根的概念。目标和内容教学目标: 1、了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一

6、些具体问题 2、提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根同时应用以上的几个知识点解决一些具体问题 教学重点: 判定一个数是否是方程的根; 教学难点: 由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根方法和手段分组讨论法教学过程导入设计一、复习引入 学生活动:请同学独立完成下列问题问题1如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为_ 整理,得_列表:x012345678问题2一个面积为120m2

7、的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为_m 根据题意,得_ 整理,得_列表:x01234567891011老师点评(略)新课设计 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗?问题2呢? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解 (3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解 为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根 回

8、过头来看:x2-36=0有两个根,一个是6,另一个是6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解 例1下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可 解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根 例2你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)

9、x2-3x=0 分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义 解:(1)移项得x2=64 根据平方根的意义,得:x=8 即x1=8,x2=-8 (2)移项、整理,得x2=2 根据平方根的意义,得x= 即x1=,x2=- (3)因为x2-3x=x(x-3) 所以x2-3x=0,就是x(x-3)=0 所以x=0或x-3=0即x1=0,x2=3归纳小结(学生归纳,老师点评) 本节课应掌握: (1)一元二次方程根的概念及它与以前的解的相同处与不同处; (2)要会判断一个数是否是一元二次方程的根; (3)要会用一些方法求一元二次方程的根学生活动思考题 练习1、2应用拓展 例

10、3要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪? 设长为xcm,则宽为(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由(2)完成下表: x1011121314151617x2-5x-150 (3)你知道铁片的长x是多少吗? 分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法“夹逼”方法求出该方程的根 解:(1)x不可能小于5理由:如果x5,则宽(x-5)0,不合题意 x不

11、可能等于10理由:如果x=10,则面积x2-5x-150=-100,也不可能(2) x 10 11 12 1314151617x2-5x-150-100-84-66-46-2402654 (3)铁片长x=15cm学法指导 以强烈的学法指导意识为前提,在教学中抓住契机,用画龙点睛,留有余味的方法点拨学生学习。动用这种方式的关键是设计、选择点拨,点在学法指导的重点处、难点处、关键处,另外还要选择点拨的最佳时机。点在新旧知识接时,点在学生百思不得其解时。作业课后作业: 1教材P28-29 习题221复习巩固3、4 一、选择题 1方程x(x-1)=2的两根为( ) Ax1=0,x2=1 Bx1=0,x

12、2=-1 Cx1=1,x2=2 Dx1=-1,x2=2 2已知x=-1是方程ax2+bx+c=0的根(b0),则=( ) A1 B-1 C0 D2 二、填空题 1如果x2-81=0,那么x2-81=0的两个根分别是x1=_,x2=_ 2已知方程5x2+mx-6=0的一个根是x=3,则m的值为_ 3方程(x+1)2+x(x+1)=0,那么方程的根x1=_;x2=_三、综合提高题 1如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值 2如果关于x的一元二次方程ax2+bx+c=0(a0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根 3在一次数学课外活

13、动中,小明给全班同学演示了一个有趣的变形,即在()2-2x+1=0,令=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根答案:一、1D 2A二、19,-9 2-13 3-1,1-三、1由已知,得a+b=-3,原式=(a+b)2=(-3)2=92a+c=b,a-b+c=0,把x=-1代入得ax2+bx+c=a(-1)2+b(-1)+c=a-b+c=0,-1必是该方程的一根3设y=x2-1,则y2+y=0,y1=0,y2=-1,即当x2-1=0,x1=1,x2=-1;当y2=-1时,x2-

14、1=-1,x2=0,x3=x4=0,x1=1,x2=-1,x3=x4=0是原方程的根板书设计221一元二次方程(二)1、一元二次方程的解叫做一元二次方程的根2、问题1、问题2的引入3、例题1、2、3讲解4、教材P28 思考题 练习1、2的训练及讲解5、课时小结:6、课外作业:课后反思 课题 22.2.1 直接开平方法教材和学情分析 本节课是在学生掌握了一元一次方程的解法及平方根的意义的基础上,学习用开平方法解形如x2= n的方程。教学目标和教学内容教学目标 1、理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题 2、提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根

15、的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程教学重点:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想教学难点 :通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程教学方法手段数学建模法、类比法教学过程导入设计 一、复习引入 学生活动:请同学们完成下列各题 问题1填空 (1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2问题2如图,在ABC中,B=90,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向

16、点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后PBQ的面积等于8cm2? 老师点评: 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 问题2:设x秒后PBQ的面积等于8cm2 则PB=x,BQ=2x依题意,得:x2x=8 x2=8 根据平方根的意义,得x=2 即x1=2,x2=-2 可以验证,2和-2都是方程x2x=8的两根,但是移动时间不能是负值 所以2秒后PBQ的面积等于8cm2新课设计二、探索新知上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开

17、平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=2 即2t+1=2,2t+1=-2 方程的两根为t1=-,t2=- 例1:解方程:x2+4x+4=1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=1 即x+2=1,x+2=-1 所以,方程的两根x1=-1,x2=-3 例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率 分析:设每年人均住房面积增长率为x一年后人均住房面积就应该是10+10x=10(1+x);二年后

18、人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4 (1+x)2=1.44 直接开平方,得1+x=1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去 所以,每年人均住房面积增长率应为20% (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程我们把这种思想称为“降次转化思想”归纳小结 本节课应掌握: 由应用直接开平方法解形如

19、x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的学生活动动手并思考 教材P31 练习学法指导 以强烈的学法指导意识为前提,在教学中抓住契机,用画龙点睛,留有余味的方法点拨学生学习。动用种方式的关键是设计、选择点拨,点在学法指导的重点处、难点处、关键处。作业 作业: 1教材P42 习题222复习巩固1、8 一、选择题 1若x2-4x+p=(x+q)2,那么p、q的值分别是( ) Ap=4,q=2 Bp=4,q=-2 Cp=-4,q=2 Dp=-4,q=-2 2方程3x2+9=0的根为( ) A3 B-3 C3 D无实数根二、填空

20、题 1若8x2-16=0,则x的值是_ 2如果方程2(x-3)2=72,那么,这个一元二次方程的两根是_3如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_ 三、综合提高题 1解关于x的方程(x+m)2=n 2某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m (1)鸡场的面积能达到180m2吗?能达到200m吗? (2)鸡场的面积能达到210m2吗? 3在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?答案:一、1B 2D 二、1 29或

21、-3 3-8三、1当n0时,x+m=,x1=-m,x2=-m当n0时,无解2(1)都能达到设宽为x,则长为40-2x,依题意,得:x(40-2x)=180整理,得:x2-20x+90=0,x1=10+,x2=10-;同理x(40-2x)=200,x1=x2=10,长为40-20=20 (2)不能达到同理x(40-2x)=210,x2-20x+105=0,b2-4ac=400-410=-100,无解,即不能达到3因要制矩形方框,面积尽可能大,所以,应是正方形,即每边长为1米的正方形板书设计22.2.1 直接开平方法1、形如x2=p(p0),则有x=。2、形如(mx+n)2=p(p0),则有mx+

22、n=。3、问题1、2引入4、例题1、2、3讲解5、巩固训练:教材P31 练习6、课时小结:7、课外作业:课后反思 课题 22.2.2 配方法(一)教材和学情分析 本节课是在学生掌握了一元一次方程的解法及平方根的意义的基础上,利用开平方法解形如x2=p或(mx+n)2=p(p0)的方程将左边是非负数的一元二次方程化为左边是含有x的完全平方形式。教学目标和教学内容教学目标: 1理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题 通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤重点:讲清“直接降次有困难,

23、如x2+6x-16=0的一元二次方程的解题步骤难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧方法手段领悟式指导法教学过程导入设计一、复习引入 (学生活动)请同学们解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得: x=或mx+n=(p0) 如:4x2+16x+16=(2x+4)2新课设计二、探索新知 列出下面二个问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢? 问题1:

24、印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起” 大意是说:一群猴子分成两队,一队猴子数是猴子总数的的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少? 老师点评:问题1:设总共有x只猴子,根据题意,得: x=(x)2+12 整理得:x2-64x+768=0 问题2:设道路的宽为x,则可列方程:(20

25、-x)(32-2x)=500 整理,得:x2-36x+70=0 (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有 (2)不能 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2-64x+768=0 移项 x=2-64x=-768两边加()2使左边配成x2+2bx+b2的形式 x2-64x+322=-768+1024 左边写成平方形式 (x-32)2=256 降次x-32=16 即 x-32=16或x-32=-16 解一次方程x1=48,x2=16 可以验证:x1=48,x2=1

26、6都是方程的根,所以共有16只或48只猴子 学生活动: 例1按以上的方程完成x2-36x+70=0的解题 老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=,x-18=或x-18=-,x134,x22 可以验证x134,x22都是原方程的根,但x34不合题意,所以道路的宽应为2 例2解下列关于x的方程 (1)x2+2x-35=0 (2)2x2-4x-1=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上 解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=6 x-

27、1=6,x-1=-6 x1=7,x2=-5 可以,验证x1=7,x2=-5都是x2+2x-35=0的两根(2)x2-2x-=0 x2-2x= x2-2x+12=+1 (x-1)2= x-1=即x-1=,x-1=- x1=1+,x2=1- 可以验证:x1=1+,x2=1-都是方程的根一、选择题 1将二次三项式x2-4x+1配方后得( ) A(x-2)2+3 B(x-2)2-3 C(x+2)2+3 D(x+2)2-3 2已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ) Ax2-8x+(-4)2=31 Bx2-8x+(-4)2=1 Cx2+8x+42=1 Dx2-4x+4=

28、-11 3如果mx2+2(3-2m)x+3m-2=0(m0)的左边是一个关于x的完全平方式,则m等于( ) A1 B-1 C1或9 D-1或9二、填空题 1方程x2+4x-5=0的解是_ 2代数式的值为0,则x的值为_ 3已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_,所以求出z的值即为x+y的值,所以x+y的值为_三、综合提高题 1已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长 2如果x2-4x+y2+6y+13=0,求(xy)z的值 3新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元

29、时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?答案:一、1B 2B 3C二、1x1=1,x2=-5 22 3z2+2z-8=0,2,-4三、1(x-3)(x-1)=0,x1=3,x2=1,三角形周长为9(x2=1,不能构成三角形)2(x-2)2+(y+3)2+=0,x=2,y=-3,z=-2,(xy)z=(-6)-2=3设每台定价为x,则:(x-2500)(8+4)=5000,x2-5500x+7506250=0,解得x=2750归纳小结本节课应掌握: 左边不含有x的完全平方形式,左边是非负数

30、的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程学生活动 教材P34 练习1 2(1)、(2)例3如图,在RtACB中,C=90,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半 分析:设x秒后PCQ的面积为RtABC面积的一半,PCQ也是直角三角形根据已知列出等式 解:设x秒后PCQ的面积为RtACB面积的一半 根据题意,得:(8-x)(6-x)=86 整理,得:x2-14x+24=0 (x-7)2=25即x1=12,x2=2 x1=12,x2=2都是原

31、方程的根,但x1=12不合题意,舍去所以2秒后PCQ的面积为RtACB面积的一半学法指导 在教师提示、启导下,让学生自悟学法。此法的关键在于,教师要能启发、引导学生按教学思路去领悟、发现新的学法,特别是通过顿悟,给学生点燃思维、灵感的火花,让他们尽可能多地去发现学法。课外作业作业 1教材P42 习题222复习巩固2、9板书设计22.2.2 配方法(一)1、完全平方式:a2+2ab+ b2=(a+b)2a2-2ab+ b2=(a-b)22、问题1、2引入3、例题1、2、3讲解4、巩固训练:教材P34 练习1 2(1)、(2)5、课时小结:6、课外作业:课后反思课题 22.2.2 配方法(二)教材

32、和学情分析 本节是在学生已经掌握了用开平方法解形如x2=p(p0)或(mx+n)2=p(p0)的方程的基础上,进一步学习二次项系数是1的一元二次方程的解法。教学目标和教学内容教学目标:了解配方法的概念,掌握运用配方法解一元二次方程的步骤 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目 教学重点:讲清配方法的解题步骤教学难点:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方 方法和手段探究性学习教学法教学过程导入设计一、复习引入 (学生活动)解下列方程: (1)x2-8x+7=0 (2)x2+4x+1=0 老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题 解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9 x-4=3即x1=7,x2=1 (2)x2+4x=-1 x2+4x+22=-1+22 (x+2)2=3即x+2= x1=-2,x2=-2新课设计二、探索新知 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服