1、 高等数学考研大纲(一)、数一考试大纲第一章 函数的极限与连续 1理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 2了解函数的有界性、单调性、周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念 4掌握基本初等函数的性质及其图形,了解初等函数的概念 5理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系 6掌握极限的性质及四则运算法则 7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法 8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限 9理解函数连续性的概念(含左连续与右
2、连续),会判别函数间断点的类型 10了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质 第二章 一元函数微分学 1理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系 2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3了解高阶导数的概念,会求简单函数的高阶导数 4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以
3、及反函数的导数 5理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理 6掌握用洛必达法则求未定式极限的方法 7理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用 8会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形 9了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径 第三章 一元函数积分学 1理解原函数的概念,理解不定积分和定积分的概念 2
4、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法 3会求有理函数、三角函数有理式和简单无理函数的积分 4理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式 5了解反常积分的概念,会计算反常积分 6掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值 第四章 向量代数和空间解析几何 1理解空间直角坐标系,理解向量的概念及其表示 2掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件 3理解单位向量、方
5、向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法 4掌握平面方程和直线方程及其求法 5会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题 6会求点到直线以及点到平面的距离 7了解曲面方程和空间曲线方程的概念 8了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程 9了解空间曲线的参数方程和一般方程了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程 第五章 多元函数微分学 1理解多元函数的概念,理解二元函数的几何意义 2了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质 3理解多元函数偏导数
6、和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性 4理解方向导数与梯度的概念,并掌握其计算方法 5掌握多元复合函数一阶、二阶偏导数的求法 6了解隐函数存在定理,会求多元隐函数的偏导数 7了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程 8了解二元函数的二阶泰勒公式 9理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题 第六章 多元函数积分学 1理解二重积分、三重积分的概念,了解重积
7、分的性质,了解二重积分的中值定理 2掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标) 3理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系 4掌握计算两类曲线积分的方法 5掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数 6了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分 7了解散度与旋度的概念,并会计算 8会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转
8、动惯量、引力、功及流量等) 第七章 无穷级数 1理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件 2掌握几何级数与级数的收敛与发散的条件 3掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法 4掌握交错级数的莱布尼茨判别法 5了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系 6了解函数项级数的收敛域及和函数的概念 7理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法 8了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和 9了解函数
9、展开为泰勒级数的充分必要条件 10掌握及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数 11了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式 第八章 常微分方程 1了解微分方程及其阶、解、通解、初始条件和特解等概念 2掌握变量可分离的微分方程及一阶线性微分方程的解 法 3会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程 4会用降阶法解下列形式的微分方程:和 5理解线性微分方程解的性质及解的结构 6掌握二阶常系数齐次线性微分方程的解法
10、,并会解某些高于二阶的常系数齐次线性微分方程 7会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程 8会解欧拉方程 9会用微分方程解决一些简单的应用问题 (二)数三大纲第一章 函数的极限与连续1理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2了解函数的有界性、单调性、周期性和奇偶性3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念5了解数列极限和函数极限(包括左极限与右极限)的概念6了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7理解无
11、穷小量的概念和基本性质,掌握无穷小量的比较方法了解无穷大量的概念及其与无穷小量的关系8理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质第二章 一元函数微分学1理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3了解高阶导数的概念,会求简单函数的高阶导数4了解微分的概念、
12、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6会用洛必达法则求极限7掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线9会描述简单函数的图形第三章 一元函数积分学1理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部
13、积分法2了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4了解反常积分的概念,会计算反常积分第四章 多元函数微积分学1了解多元函数的概念,了解二元函数的几何意义2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极
14、值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算第五章 无穷级数1了解级数的收敛与发散、收敛级数的和的概念2了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4会求幂级数的收敛半径、收敛区间及收敛域5了解幂级数在其收敛区间内的基本性质(和函数
15、的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6了解,及的麦克劳林(Maclaurin)展开式第六章 常微分方程与差分方程1了解微分方程及其阶、解、通解、初始条件和特解等概念2掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3会解二阶常系数齐次线性微分方程4了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5了解差分与差分方程及其通解与特解等概念6了解一阶常系数线性差分方程的求解方法7会用微分方程求解简单的经济应用问题(三)、高等数学数二考试大纲第一章 函数、极限、连续1理解函数的概念,
16、掌握函数的表示法,并会建立应用问题的函数关系2了解函数的有界性、单调性、周期性和奇偶性3理解复合函数及分段函数的概念,了解反函数及隐函数的概念4掌握基本初等函数的性质及其图形,了解初等函数的概念5理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系6掌握极限的性质及四则运算法则7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限 9理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的
17、性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质第二章 一元函数微分学1理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3了解高阶导数的概念,会求简单函数的高阶导数4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylo
18、r)定理,了解并会用柯西( Cauchy )中值定理6掌握用洛必达法则求未定式极限的方法7理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用8会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形9了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径第三章 一元函数积分学1理解原函数的概念,理解不定积分和定积分的概念2掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3会求有理函数、三角函
19、数有理式和简单无理函数的积分4理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式5了解反常积分的概念,会计算反常积分6掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值第四章 多元函数微积分学1了解多元函数的概念,了解二元函数的几何意义2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数4了解多元函数极值和条件极值的概念,掌握多元函
20、数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题5了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)第五章 常微分方程1了解微分方程及其阶、解、通解、初始条件和特解等概念2掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程3会用降阶法解下列形式的微分方程: 和 4理解二阶线性微分方程解的性质及解的结构定理5掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程6会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程7会用微分方程解决一些简单的应用问题
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100