ImageVerifierCode 换一换
格式:DOC , 页数:31 ,大小:916.50KB ,
资源ID:2087741      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2087741.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(毕业设计-中国人口增长预测数学建模竞赛论文.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

毕业设计-中国人口增长预测数学建模竞赛论文.doc

1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话)

2、: 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日赛区评阅编号(由赛区组委会评阅前进行编号):高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):中国人口增长预测摘要: 中国作为世界上人口最多的发展中国家,人口问题直接影响着我们国家的发展。本文运用数学建模的方法,建立了中国人口增长的数学模型,并对未来中国的人口状况做出了预测

3、。中短期人口模型:我们以莱斯利(Leslie)模型作为理论基础,建立了一个全国人口模型。由于中国城镇化进程不断加快,所以把全国划分为城,镇,乡三个独立子系统建模方法是不可行的。通过对数据进行处理,在得到了全国人口的死亡率和生育率之后,再使用指数平滑的方法,就可以得到一个相对稳定的各个年龄段的死亡率和生育率。如果把中国看作一个独立的人口系统,就可以使用莱斯利模型顺利的建立起全国女性人口模型。建立了全国女性人口模型后,我们引入了两个重要的变量:男女比例矩阵和初生男女婴儿比例函数。通过这两个变量就可以由全国女性人口模型建立起全国人口的中短期模型。通过中短期模型,可以分析出我国人口在未来几十年的变化趋

4、势,得出以下结果。在2025年-2030年期间我国人口将达到峰值,然后人口数量就开始下降(参见图1)。而我国的老龄化进程会不断地加剧,在2040年左右将达到人口老龄化的最高峰,并在以后的十几年的时间里保持这种状态,形成一个人口老龄化的高峰平台(参见图2)。有意思的是,性别比例异常也对人口走势产生了影响。性别比例异常不会对人口增长产生特别明显的效果,但在人口衰退期,却对人口数目的减少起到了微妙的作用(参见图4)。长期人口模型:在长期模型中,我们尝试着模拟未来中国100年的时间里人口总量的变化情况。我们对莱斯利模型进行了改进,使这个模型能够适用于三个人口子系统(城,镇,乡)之间人口相互转移的情况,

5、从而使长期人口模型在大的时间跨度能够更好的符合实际情况。我们在模型中引入了迁移率(迁入人口与总人口的比)的概念,使这三个系统之间的迁入迁出关系得到量化。这样通过迁移率将三个相对独立的人口子系统联系起来,就能利用改进的莱斯利模型进行求解。通过对长期人口模型的分析,我们可以得到未来100年的时间里中国人口总量的变化趋势 (见图5)。在经历了21世纪中叶的人口高峰后,我国人口可能会经历一个长达半个世纪的衰退期. 关键字:莱斯利(Leslie)模型, 城镇化,指数平滑,老龄化,迁移率 1问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做

6、出分析和预测是一个重要问题。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的国家人口发展战略研究报告(附录1) 还做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从中国人口统计年鉴上收集到的部分数据。试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。2 模型假设1、假设在中国在未来会

7、长期保持安定的局面2、不考虑突发事件(如传染病暴发,战争等)和因不可抗力(地震,海啸等)对人口数量造成的影响。3、将全中国作为一个独立的人口系统,不考虑迁入迁出,即忽略中国人向海外移民和外国人定居中国对中国人口分布状况和总数的影响.4、假设在中短期内死亡率和生育率保持相对稳定,5、假设相同年龄段的人口性别比基本稳定6、假设计划生育等国家基本政策保持不变,7、假设人口生育率不受传统观念和个人主观因素的影响,如属相问题等3 符号说明: 年龄区间:妇女能够生存的最大年龄:第个年龄组在时刻的人数: 年龄密度分布: 各年龄组生育率: 存活率,G: 莱斯利矩阵: 死亡率:抽样调查到的城市女性总数:抽样调查

8、到的城镇女性总数,:抽样调查到的乡村女性总数:城市女性占总女性人数的比例:城镇女性占总女性人数的比例:乡村女性占总女性人数的比例: 女性第i年龄组死亡率城市女性第i年龄组死亡率:城镇女性第i年龄组死亡率:乡村女性第i年龄组死亡率:女婴出生率:城市女婴出生率:城镇女婴出生率:乡村女婴出生率:在起始时刻女性第年龄组的人口密度:第j数据组年龄为i的乡村女性人数:第j数据组年龄为i的城市女性人数:第j数据组年龄为i的城镇女性人数:第j数据组年龄为i的人口死亡率:第j数据组年龄为i的人口生育率:指数平滑常数:第i年龄组女性存活率:全国第年龄组女性分布率:第年女性人数密度分布:第年女性人数总数:第年龄组第

9、年全国女性人口率:男女比例矩阵:第i年龄组的男女比例函数,是的对角线元素 :第j数据组第i年龄组的男女性别比:指数平滑处理过的:初生男女婴儿比例函数:第t年全国总人口数:第t年全国年龄大于65岁的人口数:全国老龄化程度:第t年城市人口年龄分布:第t年城市男性人口年龄分布:第t年城市女性人口年龄分布:城市男女性别比例矩阵 :第t年城镇人口年龄分布:城市女性人口的莱斯利矩阵:第t年城镇男性人口年龄分布:第t年城镇女性人口年龄分布:乡村男女性别比例矩阵 :第t年乡村男性人口年龄分布:第t年乡村女性人口年龄分布:乡村男女性别比例矩阵 :乡村女性人口的莱斯利矩阵:乡村向城市迁移的人数占城市总人数的比例(

10、城市迁移率)乡村向城镇迁移的人数占城镇总人数的比例(城镇迁移率):乡村人口外迁人数占总人数的比例(乡村迁移率) V:转移到城市的人口占转移到城镇和城市总人口的比例 :城市人口占总人口数的比例:城镇人口占总人口数的比例:乡村人口占总人口数的比例 :第年城市总人口数 :第年城镇总人口数 :第年乡村总人口数:第t年中国总人口数4 问题分析我们针对中国人口增长的问题,建立了中国人口增长的模型,由此对中国人口增 长的中短期和长期趋势做出了预测。我们认为,附录中的数据均是离散化(以一年为单位)的给出,所以这个问题适合用离散模型来解决。 有中国城镇化水平不断提高,城镇化进程不断加快(每年的城镇化水平增加1个

11、百分点,见题目附录1),城,镇,乡之间人口的迁入迁出十分频繁,人口流动量大,故我们认为不能够将城,镇,乡作为三个独立的人口系统来考虑,而应当把整个中国作为一个独立的人口系统。通过附录中给出的城,镇,乡的数据,可以计算出中国作为一个系统所需要的数据。而且根据题目要求,应当考虑进中国的实际情况和人口增长的一些特点(老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等)。我们考虑可以使用经典的离散化人口模型莱斯利(Leslie)模型来做为描述中国未来人口变化趋势的理论模型。但结合中国人口增长的特点,需要在这个模型的基础上进行改进。考虑到中国老龄化进程加速,应当利用这个模型对中国未来的老龄化进

12、程做出预测。出生人口性别比例持续偏高不可避免的会影响中国未来人口的增长状况。因此在建立模型的过程中,应当考虑性别比例因素,并应该预测出性别比例失调对中国未来人口可能产生的影响。乡村人口城镇化过程在中国是一个不可逆转的趋势,我们建立的模型中还尝试着预测未来中国长期得变化趋势。5 模型的建立与求解5.1中短期人口模型将中国作为一个独立的人口系统,不考虑迁入迁出,在建立中短期人口模型时,将城,镇,乡的各项数据分类进行了处理,忽略了城镇化进程对人口死亡率和生育率的影响,且认为在短期内相同年龄段的人口性别比基本稳定。5.1.1莱斯利(Leslie)模型 将女性按相同的年龄区间划分为组,各组中女性的年龄在

13、之内,其中为妇女能够生存的最大年龄.设每个年龄组组中的妇女有相同的生育率和死亡率。我们考察时间时各年龄组中的人数.设表示第个年龄组在时刻的人数,称其为年龄密度分布,并令.又设为第组妇女平均每人在时间内生育并成活的婴儿数,为第组女性生存到、进入组的人数比例,于是各组人数之间的关系为 1.1)令1.2)G称为莱斯利矩阵,它可以改写为1.3)显然,由于妇女有一定的生育期,从某个年龄组(如l组)开始以后各组和某个年龄组(如k组)之前各组均无生育能力,既当5.1.2女性人口模型 在Leslie模型的基础上,我们建立了女性人口模型。在建立模型时,与年龄的离散化相对应,时间也离散为时段,并且时段的间隔与年龄

14、区间大小相等,这样,我们以1岁为1个年龄组,1年为1个时段,即年岁的女性人数为.假定在短期内女性生育率保持不变,即女性生育率只与年龄有关,其育龄区间为15,49,同时假设死亡率也只与年龄有关,存活率为.则由Leslie模型,可以得到最近几年的女性人口年龄的密度分布有如下递推式: .1.4)当初始分布向量已知时,则可得1.5)通过可以很容易的研究时段人口的总数和年龄结构.5.1.3中短期人口模型5.1.3.1 模型分析在5.1.1和5.1.2的基础上,我们就可建立起全国中短期人口模型.在人口总数模型中,我们将中国作为一个独立的系统,不考可虑外界的迁入与迁出对国内人口的影响。这样如果只考虑从女性人

15、口数量出发,就可以建立一个全国的女性人口模型。然后再男女比例矩阵和初生男女婴儿函数,我们就可以对全国的总人口数和年龄结构进行预测。在使用女性人口模型时,我们首先需要确定的是女性人口各年龄段的生育率和女性人口各个年龄段的死亡率以及初始全国女性人口的年龄密度分布。5.1.3.2 模型建立 中短期人口模型中,在短期内,生育率与各年龄阶段的死亡率都不随时间而变化。这样在中短期人口模型中,和都可以通过附录2中给出的统计数据得出。我们首先根据附录中给出的数据,计算出了全国女性的各个年龄段的生育率和死亡率。对于2001-2005年的数据,我们以抽样调查到的城市女性总数,城镇女性总数,乡村女性总数的比例作为全

16、国城市女性,城镇女性和乡村女性的比例。即有:1.6)1.7)1.8)可知则全国女性每个年龄段的死亡率,1.9)全国女性各个年龄段的生育率 1.10)全国女性的年龄密度分布 1.11)在计算各年龄段死亡率和各年龄段生育率时,我们令2001年到2005年的数据分别为和,其中作为区分年份的下标,分别对应2001年,2002,2004年和2005年的情况,表示年龄,。但是由于2003年是非典爆发,我们在计算中都没有考虑2003年的情况。 为了能够得到 ,我们使用了指数平滑的方法。指数平滑法是常用的一种时间序列预测方法。该方法假定未来预测值对过去已知数据有一定关系,近期数据对预测值的影响较大,远期数据对

17、预测值的影响较小,影响力呈几何级数减少。该法如公式1.12)所示: 1.12) 我们取,即近期数据对测量值的影响较大,然后有 1.13)从而有1.14) 计算全国女性各个年龄段生育率和年龄密度分布也采用相同的方法 1.15)取可得1.16) 而对于,因为我们以2005年作为过去和未来的时间分界点,故的初值为 1.17)这样即可得到Leslie矩阵 1.18)这样,由2.2式可知, 1.19)是从2005年往后第t年的女性人口年龄密度分布,第t年的全国女性总人数为 1.20) 对于男性人口,我们首先引入了一个各个年龄段的男女比例矩阵 1.21)对于对角线中的每一项,有。 1.22)在计算初始的各

18、年龄段的男女比例时,我们令2001年到2005年的数据为,其中作为区分年份的下标j=1,2,3,4分别对应于2001年,2002年,2004年和2005年的情况,同样不考虑2003年。对此我们同样采用指数平滑法对2001年,2002年,2004年和2005年的各个年龄段男女人口比例进行了处理,即有:1.23)则对于的初始值,我们有 1.24)为了表示未来人口的变化,我们又引入了一个出生男女婴儿比例函数, 它表示在第年的出生男女婴儿比例。其中 1.25) 那么在知道了第年的女性人口年龄分布函数之后,可以用以下办法求第年的男性人口年龄分布函数。对于 1.26)当,而 1.27)只要知道了,就可以通

19、过递推关系确定任意的值。对于,将在5.1.4.3中进一步讨论。这样,由式1.19和式1.27,可以求出以2005年为起始点,第年的男性人口年龄分布为1.28)则全国人口的年龄分布函数为 1.29)其中I为单位阵。5.1.3 模型的求解根据附录2中给出的抽样人数和式1.6-1.8,我们可以得到每年的(见表1),根据城,镇,乡人口比例关系和式1.12-1.16,可以依次求出和,具体数据见附录(5)。通过式1.17和式1.18可以求出式1.19。a2001200220042005城女0.24670.26730.26430.2798镇女0.13050.12570.1550.1719乡女0.62280.

20、6070.58070.5483 表15.1.4对中国人口增长的预测 5.1.4.1对未来中国人口总数的预测 由于出生婴儿男女比例受到很多人为因素的干扰,我们几乎不可能找到一个关于时间的函数关系。为了对未来人口的总数做出预测,我们先假定它是一个常数。由于近几年男女性别比持续偏高,这里我们取值为1.18(参见题目 附件1)。同时假设2005年的人口总数为单位1。根据式1.29)有第年的人口年龄分布为:1.30) 则全国第t年的总人口数为: 1.31)这样我们可以通过用matlab编写程序绘制出中国未来50年中国人口总数的变化趋势图。程序参见附录。 图(1) 从图(1)中可以观测到,在未来的20-3

21、0年间,我国人口会一直保持增长,大约在年达到人口高峰。若将年的实际中国人口总数计算在内,则可以的到未来年中国人口的数量。我们取年的人口总数为130756万人,则下表显示了2005年以后50年的中国人口总数。时间0123456789人数(亿) 13.160913.160913.258913.351813.442613.531913.620513.709413.796813.8825时间10111213141516171819人数(亿)13.964314.040514.113014.177514.235314.286814.329014.365214.392314.4104时间2021222324

22、2526272829人数(亿)14.422114.425214.423814.417614.406914.394314.375014.354614.330614.3039时间30313233343536373839人数(亿)14.274014.239914.203614.163514.121014.073014.021413.968113.907313.8453时间40414243444546474849人数(亿)13.779313.710513.641613.567513.496013.428613.354613.284613.194913.0968 表2 通过表2可知,在未来50年,中国人

23、口将会经历一个先增后减的过程,峰值数量大约为14.5亿,这与官方预期估计相吻合。5.1.4.2 对未来人口老龄化进程的预测莱斯利模型的一个特点是能够预测人口的年龄结构。我们建立的中短期人口模型保持了这个特点。由式1.30可知中国各年龄段人口分布。我们以65岁作为老龄化起点年龄,则在第年老龄化人口数为 1.32) 这样可以求出第t年的老龄化比例为 1.33)当时,我们可以求出各年的老龄化比例,用matlab可以很容易的求出2005年以后50年的老龄化程度,程序见附录(2)。我们将预测出的今后50年的老龄化比例绘制成图(2),以反映今后50年的老龄化进程。 图(2)通过图(2),我们可以预测到今后

24、30多年我国老龄化程度将不断加剧。在2040年左右,达到一个老龄化的高峰。在以后的几十年的时间里,虽然老龄化程度略有下降,但始终保持了一个较高且比较稳定的老龄化比例,从而形成一个人口老龄化高峰平台。5.1.4.3出生性别比对人口的影响式1.27中,我们给出了男女比例矩阵的求法,即 它表示的意义是,在第t年的人口在1岁的年龄段的男女性别比例是第t-1年的0岁年龄段的男女性别比例,2岁年龄段的男女性别比例是第t-1年的1岁年龄段的男女性别比例,往后依次类推。但对于第t年的0岁的男女比例,我们引入了男女初生婴儿比例函数。从男女比例矩阵中可以看出某一年的男女初生婴儿比例会在以后相当长的一段时间内对比例

25、矩阵产生应影响。在正常情况下,男女出生婴儿比例应当是一个常数,大约在1.03-1.07之间(附录1)。由和可知,男女婴儿初生比例函数会对以后社会男女比例产生重要影响。观察2001-2005年的男女比例数据,如图3所示。 图(3)通过观察图3可知,图中用A标出的区域中年龄段的性别比严重失调,根据式1.27,可知如果这种情况一直得不到纠正,这部分人口进入成年后,男女比例失调的情况有可能对社会稳定 产生消极的影响。我们可以考查一下对产生影响的各个可能因素。首先就是重男轻女思想的影响,导致很多的医学需要的胎儿性别鉴定和非医学需要的选择性别的人工终止妊娠行为,甚至发生了很多溺弃女婴的行为(附录1 )。这

26、就使得男女初生婴儿比例明显偏大。再次,就是计划生育政策也会对男女性别比例产生一定影响。最后,国家已经开始关注男女性别比偏高的问题,此后肯定会出台一系列的政策,使男女性别比例逐渐趋于正常水平。但这还要考虑到一个政府政策执行程度的问题。综合以上各个因素,可知初生婴儿男女性别比的未来变化趋势受人为因素影响很大,无法找一个确定的函数来对其进行预测。我们做了如下两种假设:、现有的男女性别比偏高会一直维持下去,并保持在1.18左右,不会进一步恶化即此时有 1.34) 2、现有的男女性别比偏高会在政府的影响下,于2020年左右逐渐趋于正常(附录1 ),这是我们为了便于研究,可以设为一个分段函数,即有 1.3

27、5) 我们将这两个函数分别代入式1.27中,用以替换,将对式1.31的值产生影响。我们为了让人便于观测性别比不同对人口总数的影响,我们用matlab绘制了在未来50年内两种不同的男女初生婴儿比例最人口总数的影响,程序见附录(3)。 图(4)可以看出男女初生婴儿比例对人口总数会产生一定的影响,但这种影响在人口增长期表现得并不明显,但在人口的衰退期,却会对减缓人口衰退产生一定的影响。5.2长期人口模型中国在近期的城镇化进程不断加快,城镇化水平不断提高。由于城,镇,乡三个不同的人口系统的人口生育率和死亡率各不相同,所以在研究中国人口的长期模型时,必须考虑到城镇化进程对中国人口的影响。因此我们把中国人

28、口划分为城市,城镇和乡村三个子系统,并将城镇化进程考虑在内,对中国长期的人口状况进行预测。5.2.1城,镇,乡子系统的建立和建立中短期人口模型的过程相似,首先在莱斯利模型的基础上,为城,镇,乡分别建立起人口方程。在建立模型之前,对附录二中给出的各个子系统的生育率和死亡率都仿照式1.12和式1.15进行了指数平滑处理。建立的模型如下: 5.2.1.1城市模型: 2.1) 其中,为城市男女性别比例矩阵,为第t年的各年龄段城市女性人口的年龄分布.它满足关系 2.2)为城市女性人口对应的莱斯利矩阵。5.2.1.2城镇模型: 2.3) 其中,为城镇男女性别比例矩阵,为第t年的各年龄段城镇女性人口的年龄分

29、布.它满足关系 2.4)为城镇女性人口对应的莱斯利矩阵。5.2.1.3乡村模型 2.5) 其中,为乡村男女性别比例矩阵,为第t年的各年龄段乡村女性人口的年龄分布.它满足关系 2.6)为乡村女性人口对应的莱斯利矩阵。5.2.2考虑城镇化的模型由于中国目前的城镇化进程不断加快,所以5.2.1,5.2.2和5.2.3建立的模型实际上都不满足莱斯利方程的没有迁入和迁出这一前提条件。故建立的三个子系统模型还需要进一步完善。为了研究方便,我们假设在城镇化过程中,假定人口迁移的数量各个年龄段是等比例的。假设城市,城镇和农村的迁移率分别为则由式2.1),式2.3)和式2.5)可以得到在城镇化影响下的各个子系统

30、的人口模型:城市模型: 2.7) 2.8)城镇模型: 2.9) 2.10)乡村模型: 2.11) 2.12)根据附录1中的描述,假设每年大约有1%的农村人口从农村转移到城市,假设转移到城市的人口和转移到城镇和城市总人口的比例为,我可以近似的人为。 2.13)由1%的转移率可知 2.14) 2.15) 2.16)5.2.3 长期人口模型预报的人口总数在农村人口不断的像城市的转移过程中,城市人口,城镇人口和乡村人口的比例关系也在不断的变化,若分别表示第t年城,镇,乡三个子系统占总人口数的比例,设即有:2.17) 2.18) 2.19) 的值可以由2005年城,镇,乡抽样调查的人口数求出。如果我们设

31、城市子系统,城镇子系统和乡村子系统得人口总数都为单位1,则可以的到在长期人口模型中人口总数为: 2.20) 以2005年作为起点,则第t年的实际人口总数为与2005年的人口总数之积。根据以上的推导,用matlab编写程序(见附录(4),可以模拟未来100年中国人口总数的变化情况.如图5所示: 图5 通过图5,可以看到,如果保持现有的生育水平,在经历21世纪中叶的人口高峰后,我国人口将会进入一个持续衰退的阶段。6 模型评价与改进6.1中短期人口模型6.1.1优点中短期人口模型是一个离散化的人口模型,容易用计算机实现对模型的处理和分析。附录中给出的数据也是以时间段和年龄段等离散形式给出的,采用离散

32、模型,简化了数据处理的难度。中短期模型是基于莱斯利模型建立起来的。采用莱斯利模型可以更好利用按年分段的特点,同时预测的结果还可以反映年龄的结构,便于分析人口的老龄化问题。附录中给出的死亡率与生育率正是莱斯利模型需要确定的参数,为建立模型提供了方便。对于人口预测比其他模型更注意人口本身的结构,而非只是一味的数学公式的推导和演算,便于解释一些人口由于受到某些因素的影响而出现畸形金字塔后的人口发展状况,较为密切的配合人口发展曲线。例如,我们在中短期模型中,采用指数平滑的方法,去除掉采样数据的异常点,从而不需要对大量数据进行人工分析处理。方法灵活,模型的容纳性好,可进行更大范围的推广。此外,对于被模型

33、的结论,后面的长期人口模型都可以使用,也避免了多次对大样本数据的处理。我们在模型中引入了出生男女婴儿比例函数和男女比例矩阵,使性别比例可以动态,一定程度上克服了莱斯利模型中男女比例固定的缺点。6.1.2不足与改进我们在建立模型的过程中,忽略了生育率和死亡率随时间的变化,而是认为它在短期内保持相对稳定。当实际上死亡率在逐渐下降,而生育率则可能受到多种因素的影响。可以为出生率和死亡率建立关于时间t的函数,分别表示为和,这样莱斯利矩阵就可以表示为确定和可以采用对多点数据进行采样,然后再进行拟和。在将城,镇,乡的数据处理为全国人口的数据后,我们忽略了城镇化进程对死亡率和生育率造成的影响,从而会产生一定

34、的误差。6.2长期人口模型。 6.2.1优点 长期模型是在中短期模型的基础上建立的,但是长期模型考虑到了城镇化进程对人口发展趋势的影响,在模型中引入了迁移率(迁入人口与总人口的比)的概念,通过它来表示城镇化进程,使这三个系统之间的迁入迁出关系函数化。这样就将三个独立的人口子系统联系起来,可以使用莱斯利模型进行求解。6.2.2缺点 长期人口模型默认现有的生育率保持不变,但在大时间尺度上,生育率可能会发生很大的变化。 随着现代医学的发展,死亡率应该会持续降低,但没有可行的办法对它进行估计。 对城镇化的函数描述也过于理想化。七 相关政策建议人口问题是我国的重要问题,有着鲜明的中国特色,通过合理得预测

35、可以帮助我们对相关政策提出一些有价值的建议:1、 坚持实施计划生育政策2、 必须遏制男女性别比偏高的趋势3、 积极应对老龄化进程参考文献 1 谭永基,蔡志杰,愈文鱼此,数学模型,上海:复旦大学出版社,20052 姜启源,谢金星,叶俊 ,数学模型(第三版),北京:高等教育出版社,20053 刘卫国, matlab程序设计教程 北京:中国水利水电出版社4 赵静 ,但 琦 数学建模与数学实验(第2版) 北京:高等教育出版社5 杨德清,王莲香,赵林坤 人口统计学 石家庄:河北人民出版社6 蒋正华 人口分析与规划 西安:陕西科学技术出版社7 洪毅,林毅良,陶志穗 数学模型 北京:高等教育出版社8中国政府

36、网,中国人口现状网址:附录文件附录(1)load init_data.txt;load ratio.txt;G;temp_a=zeros(50);p=zeros(50,1);temp=A*init_data;for i=1:50 for j=1:91 temp_a(i)=temp_a(i)+temp(j)*(1+ratio(j); end temp_a(i)=temp_a(i)/1000; p(i)=13.0756*(temp_a(i); temp=A*temp; for pp=1:90 ratio(92-pp)=ratio(91-pp); end if(i16) ratio(1)=1.18-

37、floor(i/3)*0.024; else ratio(1)=1.06; endendpx=1:1:50;plot(x,temp_a,g);hold on附录(2)load init_data.txt;load ratio.txt;G;temp_a=zeros(50);p=zeros(50,1);temp=A*init_data;for i=1:50 u=0; for j=65:91 u=u+temp(j)*(1+ratio(j); end temp_a(i)=u/1000; p(i)=13.0756*(1+(temp_a(i)-1)*2.2); temp=A*temp; for pp=1:

38、90 ratio(92-pp)=ratio(91-pp); end ratio(1)=1.15;endpx=1:1:50;plot(x,temp_a,r);附录(3)load init_data.txt;load ratio.txt;G;temp_a=zeros(50);p=zeros(50,1);temp=A*init_data;for i=1:50 for j=1:91 temp_a(i)=temp_a(i)+temp(j)*(1+ratio(j); end temp_a(i)=temp_a(i)/1000; p(i)=13.0756*(temp_a(i); temp=A*temp; for pp=1:90

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服