1、_七年级一元一次方程应用题分类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系)(2)设设出未知数:根据提问,巧设未知数(3)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解解方程:解所列的方程,求出未知数的值(5)答检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案(注意带上单位)二、具体分类(一)行程问题画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行
2、程问题。1.行程问题中的三个基本量及其关系:路程速度时间 时间路程速度 速度路程时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距(3)航行问题:顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度水流速度=(顺水速度-逆水速度)2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系即顺水逆水问题常用等量关系:顺水路程=逆水路程常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。常用的等量关系:1、甲、乙二人相向相遇问题甲走的路程乙走的路程总路程 二人所用的时间相等或有提前量2、甲、乙二人
3、中,慢者所行路程或时间有提前量的同向追击问题甲走的路程乙走的路程提前量 二人所用的时间相等或有提前量3、单人往返 各段路程和总路程 各段时间和总时间 匀速行驶时速度不变4、行船问题与飞机飞行问题 顺水速度静水速度水流速度 逆水速度静水速度水流速度5、考虑车长的过桥或通过山洞隧道问题 将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。6、时钟问题: 将时钟的时针、分针、秒针的尖端看作一个点来研究 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。常用数据: 时针的速度是0.5/分 分针的速度是6/分 秒针的速度是6/秒例题分析:例1:甲、乙两站相距480公里,一列慢车从甲站开
4、出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)解:1、设快车开出x小时后相遇,依题意得48090(1+x)+140X 解得x39/23小时2、设x小时后
5、两车相距600km,依题意得600-48090x+140X 解得x12/23小时3、设x小时后两车相距600km,依题意得600-480140x-90x 解得x2.4小时4、设x小时后快车追上慢车,依题意得480(140-90)x 解得x9.6小时5、设x小时后快车追上慢车,依题意得480+90*1(140-90)x 解得x11.4小时 例2:人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?解:设家到学校y千米,依题意得解得y=45/4千米答:家到学校的距离为45/4千米例3:某人计划骑车以每
6、小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。解:方法一:设由A地到B地规定的时间是 x 小时,则12x x2 12 x12224(千米) 方法二:设由A、B两地的距离是 x 千米,则 (设路程,列时间等式) x24 答:A、B两地的距离是24千米。温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。例4:甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。
7、解:半小时=1/2小时,10分钟=1/6小时。设乙的速度是每小时x千米,依题意得解得x=2答:乙的速度是每小时2千米。例5:甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。解:设乙的速度是 x 千米/时,则 3x3 (2x2)25.52 x5 2x212答:甲、乙的速度分别是12千米/时、5千米/时。6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,
8、这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)老师提醒:此类题相当于环形跑道问题,两者行的总路程为一圈即 步行者行的总路程汽车行的总路程602解:设步行者在出发后经过x小时与回头接他们的汽车相遇,则 5x60(x1)6027、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗? (提示:此题为典型的追击问
9、题)解:设爸爸用x小时追上我们,则 6x2x21 解得 x0.5 0.5小时1小时45分钟 答:能追上。8、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。解:设A、B两地间的路程是 x 千米,则 方法一: 方法二:x363622 解,得 x108 答:A、B两地间的路程是108千米。9、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?解
10、:(1)背向而行,设为X秒,两人合计跑400米,依题意得5X+3X=400 解得X=50秒(2)同向 设为Y秒,甲必须比乙多跑一圈才能相遇,依题意得5Y-3Y=400解得Y=200秒答:如果背向而行,两人50秒第一次相遇。如果同向而行,两人200秒第一次相遇。10、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。 行人的速度为每秒多少米? 这列火车的车长是多少米?老师提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。
11、等量关系: 两种情形下火车的速度相等 两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。解: 行人的速度是:3.6km/时3600米3600秒1米/秒 骑自行车的人的速度是:10.8km/时10800米3600秒3米/秒 方法一:设火车的速度是x米/秒,则 26(x3)22(x1) 解得x4 方法二:设火车的车长是x米,则 11.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是32,问两车每秒各行驶多少米?解:设客车每秒行驶3x米,则货车每秒行驶2x米,依题意得 3x16
12、+2x16=200+280 解得x=6 客车的速度为3x6=18 货车的速度为2x6=12答:客车和货车每秒分别行驶18米、12米。12、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【 】(A)60秒 (B)50秒 (C)40秒 (D)30秒老师提醒:将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时所用的时间,就是所求的完全通过的时间,哈哈!你明白吗?解:时间(600150)1550(秒) 选B。13、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上
13、的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。老师解析:只要将车尾看作一个行人去分析即可,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。解:方法一:设这列火车的长度是x米,根据题意,得 x300 答:这列火车长300米。方法二:设这列火车的速度是x米/秒,根据题意,得20x30010x x30 10x300 答:这列火车长300米。14、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇
14、到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。注:此为二题合一的题目,即独立的二人相遇问题和狗儿的独自奔跑。只是他们的开始与结束时间是一样的,以此为联系,使本题顿生情趣,为诸多中小学资料所采纳。解:设甲、乙两人相遇用 x 时,则2x2x5 (千米)答:小狗所走的路程是15千米。15、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角?解:设X分钟后重合开始时相距240(从12到8)分针每分钟走6,时针每分钟走0.5(360/60;30/60)6X=0.5X+240解得X=480/11时重合即8点43又7/11同理:平角:6X+180=0.5X+240解
15、得X=120/11 8点10又10/11分直角:6X+90=0.5X+240解得X=300/11 8点27又3/11分。或6X-90=0.5X+240解得X=60(不合舍去) 16、在6点和7点之间,什么时刻时钟的分针和时针重合?老师解析:6:00时分针指向12,时针指向6,此时二针相差180,在6:007:00之间,经过x分钟当二针重合时,时针走了0.5x分针走了6x以下按追击问题可列出方程,不难求解。解:设经过x分钟二针重合,则6x1800.5x 解得17、在3时和4时之间的哪个时刻,时钟的时针与分针:重合; 成平角;成直角;解: 设分针指向3时x分时两针重合。 答:在3时分时两针重合。
16、设分针指向3时x分时两针成平角。 答:在3时分时两针成平角。设分针指向3时x分时两针成直角。 答:在3时分时两针成直角。 行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。流水问题有如下两个基本公式:顺水速度=船速+水速 (V顺=V静+V水) 逆水速度=船速-水速 (V顺=V静-V水)例18: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?解:设船的速度为x 千米/每时,依题意得2(x+3)=3(x-3) 解得x=15码头之间的距离为2 x(15+3)=36(千米)答:两码头的之间的距离是36千米。例19、一架飞机
17、飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。解:设无风时的速度为x千米/小时,依题意得 解得x=840 3( x-24)=3x (840-24)=2448答:飞机速度是每小时840千米,距离是2448千米20、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。解:设A与B的距离是x千米,(请你按下面的分类画出示意图,来理解所列方程) 当C在A、B之间时, 解得x120 当C在BA的延长线上时,
18、解得x56答:A与B的距离是120千米或56千米。巩固练习:练习1:甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。练习2:某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?练习3:在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟。练习4:一列客车车长200米,一列货车车长280米,在平行的轨道上相
19、向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?练习5:与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。 行人的速度为每秒多少米? 这列火车的车长是多少米?练习6:休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈
20、妈到外婆家之前追上我们吗? 练习7:一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)练习8:某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。练习9:甲、乙两人相距5千米,分别以2千米/时的速度相
21、向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。练习10:一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。练习11:列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?练习12:两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,快车驶过慢车某个窗口所
22、用的时间为5秒。 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少? 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?练习13:甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。练习14:一辆汽车上午10:00从安阳出发匀速行驶,途经曲沟、水冶、铜冶三地,时间如下表,地名安阳曲沟铜冶时间10:0010:1511:00水冶在曲沟和铜冶两地
23、之间,距曲沟10千米,距铜冶20千米,安阳到水冶的路程有多少千米?练习15:甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。(两种方法)练习16:一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。练习17:小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。练习18:某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的
24、速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。练习19:在6点和7点之间,什么时刻时钟的分针和时针重合?练习20:在3时和4时之间的哪个时刻,时钟的时针与分针:重合; 成平角;成直角;练习21:某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?(二)工程问题:(1)、工程问题中的三个量及其关系为:工作总量=工作效率工作时间工作总量=人均工作效率工作时间人数(2)、经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和总工作量1工程问题常用
25、等量关系:先做的+后做的=完成量例题分析例1: 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还要X天才能完成全部工程,依题意得 解得X=6.6 答:乙还要6.6天才能完成全部工程例2:某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?解:设再做x天可完成工程的5/6,可得: 解得x=4 答:再做4天后可完成工程的六分之五。例题3:甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全
26、部工程.已知甲队单独做所需天数是乙队单独做所需天数的,问甲、乙两队单独做,各需多少天?巧解:设乙队每天完成的工作量为x,那么甲队每天完成的工作量为,由题意得: 解得x=1/6 答:甲队单独做需9天,乙队单独做需6天。例4:已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池注满,出水管工作24小时可以将满池的水放完;如果同时打开进水管和出水管,求几小时后可以把空池注满?解:设如果同时打开进水管和出水管,x小时后可以把空池注满,依题意得解得x=40答:如果同时打开进水管和出水管,40小时后可以把空池注满。例5:一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池
27、的水.如果两水管同时打开,那么经过几小时可把空水池灌满?解:令水箱为1,进水管每小时注水 , 出水管每小时放水 ,设两水管同时打开 , 经过x小时可把空水池灌满则由题意得()x=1 , 解得x=12 答:经过12小时可把空水池灌满。例6:一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水? X=6答:如果三管同开,6小时后刚好把水池注满水。例7:整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。解
28、法一:设原先安排x人,依题意得, 4x+(x+2)8=40 解得 x=2 答:原来有2个人解法二: 设先安排x人 由题目,有 1/40*4x+1/40(x+2)*8=1 解得 x=2 答:应先安排2人例8:一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?解:由已知每人每天完成,设需要增x人, 则列出方程为 解得 x=100 答:需要增100人例9:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?解:设甲做X个/天,依题意得,解得X=4. 原计划就是3
29、0/4=7.5天。答:甲工人每天能做4个零件?原计划7.5天完成。巩固练习:练习1:甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的 ,问甲、乙两队单独做,各需多少天?练习2:一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?练习3:甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来甲、乙两个水池各有多少吨水? 练习4:某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加
30、工一个甲种零件可获利16元,每加工一个乙种零件可获利24元若此车间一共获利1440元,求这一天有几个工人加工甲种零件(三)和差倍分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。例题分析例1旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设原有X升,依题意得(1-25%)X-40%(75%X)+1=25%x+40%(75%X) 解得X=10 答:油箱里原有汽油10公斤。巩
31、固练习:练习1:某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?练习2:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?(四)比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。1、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2 :3,求学校有电视机和幻灯机各多少台? 2、 如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;如果设人数少的一组有4
32、x人,那么人数多的一组有_人,可列方程为: _3、甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?4、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5、则三种型号的洗衣机各生产多少台?6、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?7、甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求
33、每个人每天生产多少件?8、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。(五)劳力调配问题: 这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。例题分析: 例1:某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?解:设需从第一车间调x人到第二车间2(64-x)=56+x 解得x=24答:需从第一车间调24人到第二车间。例2:甲、乙两车间各有工人若干,如果从
34、乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。分析:如果从甲车间调100人到乙车间,这时两车间人相等.设乙车间x人,则甲车间x+200人解:设乙车间x人,则甲车间(x+200)人,依题意得6(x-100)=x+200+100 解得x=150 答:甲乙车间的人数分别为350人、150人 例3:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?解设乙队有X人,则甲有2X人 ,依题意得2X-12=1/2X+15 解得X=18 甲:1
35、8X2=36(人) 答:甲队有36人,乙队有18人巩固练习:练习1:有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队?(六)分配问题:例题分析:例1:学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。解:设有x间 ,依题意得9(x-2)=8x+12 解得 x=30 所以宿舍30间,学生8 x 30+12=252(人):答:房间有30间,学生有252人。例2:学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多
36、少汽车?解:设有X辆汽车 ,依题意得 45X+28=50(X-1)-12 解得X=18 汽车=18辆 学生=45 X 18+28=838(个):答:共有838个学生,18辆汽车。例3:有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30的墙面。求每个房间需要粉刷的墙面面积是多少平方米?解:设师傅一天粉刷x平方米,徒弟一天粉刷(x30)平方米 则一天3名师傅粉刷3x平方米,5名徒弟粉刷5(x-30)平方米 列方程 (3x40)/85(x30)/9 解得 x120每个房间需要粉刷的面积(3x120+40
37、)/8=50(平方米)答:每个房间需要粉刷的墙面面积是50平方米。(七)配套问题:这类问题的关键是找对配套的两类物体的数量关系(比值)。1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)2机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?3.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应
38、分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。4某队有45人参加挖土和运土劳动每人每天挖土4方或运土6方应该怎样分配挖土和运土的人数才能书每天挖出的土?5.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?6.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。7.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢24
39、0米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?(八)年龄问题:例题分析:例1:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是几岁?2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。3、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄. 4、今年哥俩的岁数加起来是55岁。曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁? 曾经:哥哥 弟弟 曾经:哥哥 弟弟 今年:+ 今年:55- + =55 X=22 55- - = - =225兄弟二人今年分
40、别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设年后,兄的年龄是弟的年龄的2倍,则年后兄的年龄是15+,弟的年龄是9+ 由题意,得2(9+)=15+ 18+2=15+,2-=15-18 =-3 答:3年前兄的年龄是弟的年龄的2倍(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)(九)数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数
41、用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。例1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。巩固练习:练习1:一个两位数,十位上的数字与个位上的数字之和为8,把这个两位数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求原来的两位数?练习2:一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。练习3:三位数的数字之和是17,百位上的数字与十位上的数字的和比个位上的数大3,
42、如把百位上的数字与个位上的数字对调,所得的新数比原数大495,求原数练习4:有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,求这个两位数。练习5:将连续的奇数1,3,5,7,9,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.(十)比赛积分问题:1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选
43、错了几道题?2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?(十一)销售问题(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。(2)利润问题常用等量关系:商品利润商品售价商品进价商品标价折扣率商品进价商品利润率100%100%(3)商品销售额商品销售价商品销售量商品的销售利润(销售价成本价) 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售即商品售价=商品标价折扣率1、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?2、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?3、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?4.某件商品进价为800元,
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100