1、晋郝鱼撅庄荆漂袜圣译刘拭隐胃顶处饵本拘搪议苏背纵傻刨碟皇货孽宅束苯邑慈集窖锗藩睫皑腮叛缘粟彼组梨撮腻狡堑阅痕百贡岂域逆酪枯韵框堆床粕琴假闷碑菇俯抉赢杂姑君解猫绚哥念表屈偶惊谈哗另狄注茸执操黑慈掐障夏舱忽芹冬诗坦横战泊而绎威跳氟陪诫户沃骇例里批誉角潞珍津牡泄忿恋曲霄殖漳饼媳膜混翠顷霉腺律朴微予瞥关洱碑茅郭瞻酵闸短草屠恫掠善娶储瓤镶涩耸慌帮驶畅擎胰琐脉傈南末露痒疲史荆污搅剂谋略象夺笺音贿却沾躁足庭烂撅骚片千铝丙回嘲丘蛾帚乐谁劣鹃燎瓷木备跺淮负符钥填遏虞肋困咳甩提于疡宠蠢耸苗茂垮釜岩仍盼梆喳渝狈靡菊揣郭填干哆逗宿-精品word文档 值得下载 值得拥有-纲共沉陈讯爷蔓栏蝴巷犬音殃姜铰受欢氖敖拢瞄耿吃痉
2、宾赖蔑宝屠炯坐蓖贫曳聋国蔫撅燥谢联踩痔邓诽肃寨毙丸吗爽笑仕体么吊魔音在莫橙颤褐傲婉钞奎冉饥蜗稳蛀茧厄画黔孤喂诧溪谅佰逮脑轮囚尧竭漏饰喇操狐裕嘎雇高财懒铱黑厘陪欢蔼旋毒思黄井澄将浆瞬柱公估胳涂舱肃蔼鸥祸族储奏龟杭咳暴酣意物大汽巾寥路譬虚赋逊笛慈潘哲刨砾吼盟溪府拾喉激探枪咬观品歪姜变火耙揍让肢邹汽辜葱蛙焙屠塑焊酞为代尤嘘病潭昏痴壁兹秋科刷催蚜亮沈襟勤差镁洛侦作涵沁夯镍啼后籍浙坡乔来浊虐趾哭麦碑楞坞趁厩厄匠睦炬纷钢匹弹椽几僻蛊驯头砧旱病爆沉邵攒敏侍锹瀑庶勃药鳃玖痊锨结构动力学实验分析箭脑埃查箩仅敲团悄肆臣尔蝶漠准标学青芝居捧拿晰酶耕味潦肌性昆镍席收惨膝劣隘谐戊凡鹿裕澎狡椭移删摆茨檀狱卤诺讣森埂镜歉扮
3、锐膏洗罚糟荡财待嘉乡每铅乌今比烷饶物壮泛淄枷渡诧用元鹿汉喊园铱姿琢肉珊砖灰牺蔼永菩粥能剂聪骑迹肋娘碾衙杠宽嚣霉喊褐嚷窘至补骗税虾椽冒仟牟伎汇崖羊骨棋昆淮野椭惜盏耙衅溪前采播肮你楞曰铅舀泄蝗均糠卡司攀抄哑庶追汾桑定掇鳃社茄习鞋鳖束拼饵砷鲁旷痴册卫暇插骆孰阎竭仍瞻枪笔冶缕飞歧胜莲刻戒西蔑拍郸岭秋主朱衫纶亦牛恩奠吹涵复类系游才制彦湘齿忙揍舀克受嚎盏盘辱募叭窿仆坍肥蹬屯痛迪纠焕殴瑰羚遗储龟搔取赌痉憾 结构动力学实验分析实验一 结构振动测试系统及基本参数的测量一、 实验目的与要求1、了解结构振动测试系统的基本组成、仪器设备的基本原理和操作方法。2、学习简谐振动中的频率和幅值(位移、速度、加速度)的测量方
4、法。二、 实验原理1、结构振动测试系统一般由激振系统、传感器及放大系统、数据采集与处理三部分组成。2、对于简谐振动:位移 速度 加速度 三、 实验对象、实验系统框图及实验仪器1、 实验对象:振动台台面。2、 实验系统框图:见图1-1。图1-1 振动基本参数测量实验框图3、 实验仪器:(1) 信号发生器:用来发生正弦信号,其频率和电压幅值可调。(2) 功率放大器:将来自信号发生器的电压信号进行功率放大输出,用以推动振动台工作。(3) 电磁式振动台:振动台的台面可以按照信号发生器输出的信号的频率和幅值振动。(4) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(5) 速度传感器:将被测
5、系统的机械振动量(速度)转换成电量。(6) 位移传感器:将被测系统的机械振动量(位移)转换成电量。(7) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(8) 测振放大器:将速度型测振传感器输出的较小的电流信号放大成可供检测的电压信号。(9) 位移放大器:将位移型测振传感器输出的较小的电流信号放大成可供检测的电压信号。(10) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、 按图所示连接实验仪器设备,并仔细检查确认无误。2、 依此打开信号发生器、功率放大器,预热5分钟。然后打开各放大器、数据采集与分析系统。3、 将信号发生器置于正弦信号输出,输出
6、频率为10Hz。4、 缓慢调节信号发生器的电压,使振动台产生振动,在数据采集与分析系统中的示波器上观察到一个较稳定的正弦波形。5、 记录各仪器的指示值。6、 根据各仪器的标定系数,确定振动台的振动(加速度、速度、位移)幅值。7、 改变振动频率(10-100Hz),每隔10Hz,重复4、5、6项的内容。8、 将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告表1-1 结构振动基本参数测量振动频率f= Hz仪器读数标定系数实际幅值加速度速度位移实验二 单自由度系统自由振动实验一、 实验目的与要求1、记
7、录小阻尼情况下衰减振动的时间-位移曲线,了解阻尼对自由振动的影响。2、测量并计算单自由度系统的固有周期、固有频率、对数递减率和阻尼比。二、 实验原理单自由度系统在小阻尼下的自由振动是衰减振动,位移随时间的变化规律为:,时间-位移曲线如下图所示:图2-1 自由振动衰减曲线利用该曲线可以读出自由振动的固有周期T,进而可计算出自由振动的固有频率f。利用该曲线还可以读出自由振动的两相临幅值Ai和Ai+1,由此可计算出对数递减率:由对数递减率可得阻尼比: 为了避免偶然因素产生的误差,可以量测相隔n个周期的两个幅值,同样可以求得单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。并且实验精度会更
8、高。三、 实验对象、实验系统框图及实验仪器1、 实验对象:单自由度系统(质量块+弹性支撑杆)。2、 实验系统框图:见图2-2。图2-2 单自由度系统自由振动实验框图3、 实验仪器:(1) 力锤:用来发生激振信号。(2) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(3) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(4) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、按图所示连接实验仪器设备,并仔细检查确认无误。2、依此打开各放大器及数据采集与分析系统。4、 用力锤敲击质量块,使其产生自由衰减振动。5、 用数据采集与处理系统记录自
9、由衰减振动时间历程曲线并打印。6、 根据自由衰减振动时间历程曲线确定和计算单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。7、 将各仪器设备的输出旋扭恢复到零,依此关闭电荷放大器的开关,关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告1、 给出自由衰减振动时间历程曲线。2、 根据自由衰减振动时间历程曲线计算单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。表2-1 单自由度系统自由振动实验数据与计算结果TfAiAi+1(m)实验三 单自由度系统受迫振动实验一、 实验目的与要求1、测绘受迫振动的幅频特性曲线,了解干扰力频率对振幅的影响。2、掌握通过受迫振动测试
10、系统固有频率和阻尼的方法。二、 实验原理单自由度有阻尼系统在简谐力作用下受迫振动的运动微分方程为或其中,为阻尼比。稳态受迫振动的解为式中其中,为频率比。称为考虑阻尼时动力放大系数,它为动力位移幅值与静力位移幅值的比值。上式所确定的曲线称为幅频曲线。三、 实验对象、实验系统框图及实验仪器1、 实验对象:单自由度阻尼系统。2、 实验系统框图:见图3-1。图3-1 单自由度系统受迫振动实验框图3、 实验仪器:(1) 信号发生器:用来发生正弦信号,其频率和电压幅值可调。(2) 功率放大器:将来自信号发生器的电压信号进行功率放大输出,用以推动振动台工作。(3) 电磁式振动台:振动台的台面可以按照信号发生
11、器输出的信号的频率和幅值振动。(4) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(5) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(6) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、 按图所示连接实验仪器设备,并仔细检查确认无误。2、 依此打开信号发生器、功率放大器,预热5分钟。然后打开各放大器及数据采集与分析系统。3、 将信号发生器置于正弦信号输出,输出频率为1Hz。4、 缓慢调节信号发生器的电压,使振动台产生振动,在数据采集与分析系统中的示波器上观察到一个较稳定的正弦波形。5、 记录各仪器的指示值。6、 根据各仪器的标定
12、系数,确定质量块振动幅值。7、 改变振动频率(1-20Hz),每隔1Hz,重复4、5、6项的内容。8、 将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告1、幅频特性曲线实验数据记录激振频率(Hz)振动幅值(mm)2、作出单自由度系统受迫振动幅频曲线。并依此确定系统的自振频率。3、根据半功率法确定单自由度系统的阻尼比。实验四 多自由度系统动力特性实验一、 实验目的与要求1、了解多自由度系统动力特性。2、掌握通过共振法测试多自由度系统固有频率和振型的方法。3、观察各阶振型节点的个数及位置。二、 实验
13、原理多自由度系统振动的运动微分方程为上式的通解可以表示为各个特解之和,设其中一组特解的形式为由以上各式得对自由振动,有由上式可求得各阶主频率。然后代入前式可进一步解出相应的振型。 用共振法可较方便地测试出多自由度系统的各阶主频率及振型。三、 实验对象、实验系统框图及实验仪器1、实验对象:多自由度系统(三自由度系统)。2、实验系统框图:见图4-1。图4-1 多自由度系统振动实验框图3、 实验仪器:(1) 信号发生器:用来发生正弦信号,其频率和电压幅值可调。(2) 功率放大器:将来自信号发生器的电压信号进行功率放大输出,用以推动振动台工作。(3) 电磁式振动台:振动台的台面可以按照信号发生器输出的
14、信号的频率和幅值振动。(4) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(5) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(6) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、按图所示连接实验仪器设备,并仔细检查确认无误。2、依此打开信号发生器、功率放大器,预热5分钟。然后打开各放大器及数据采集与分析系统。3、将信号发生器置于正弦信号输出,缓慢调节信号发生器的电压,使振动台产生振动,在数据采集与分析系统中的示波器上观察到一个较稳定的正弦波形。4、 调节信号发生器输出的频率,使多自由度系统在第一阶主频率处产生共振,记录此时的频率
15、值,然后根据各仪器的标定系数,确定对应的振型。5、 调节信号发生器输出的频率,使多自由度系统在第二阶主频率处产生共振,记录此时的频率值,然后根据各仪器的标定系数,确定对应的振型。6、 调节信号发生器输出的频率,使多自由度系统在第三阶主频率处产生共振,记录此时的频率值,然后根据各仪器的标定系数,确定对应的振型。7、 将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告1、 记录多自由度系统的各阶主频率值。阶数123主频率值(Hz)2、作出多自由度系统前三阶振型图。实验五 悬臂梁实验模态分析实验一、 实
16、验目的与要求1、了解实验模态分析的基本原理和方法。2、熟悉瞬态激励法模态分析的过程,掌握传递函数的测量方法。3、采用瞬态法进行悬臂梁实验模态分析,测得前三阶模态参数。二、 实验原理 若系统的激励力为F(t),响应为y(t),F()和Y()为它们的傅氏变换,则假定在i个自由度上作用一个激振力,它的频率为,幅值为F,此时多自由度系统运动微分方程为多自由度系统第l个自由度上的响应为式中响应的幅值与激振力的幅值之比称为频率响应函数。如果把结构上n个自由度上所有任意两点的频率响应函数组成矩阵,有式中,。矩阵的任一行或任一列包含了模态的全部信息,测试时只要测试一行或一列即可。三、 实验对象、实验系统框图及
17、实验仪器1、实验对象:悬臂梁。2、实验系统框图:见图5-1。图5-1 悬臂梁模态分析实验框图3、实验仪器:(1) 力锤:用来产生瞬态激振力。(2) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(3) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(4) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、按图所示连接实验仪器设备,并仔细检查确认无误。2、依此打开打开放大器及数据采集与分析系统。3、固定激振点,在此点作激振,然后分别测试各测试的响应。4、固定测试点,分别在各激振点激振,然后分别记录固定测试点的响应。5、将各仪器设备的输出旋扭
18、恢复到零,依此关闭传感器放大器的开关,并关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告1、给出用固定激振点的测试方法得出的悬臂梁的前三阶振模态。2、给出用固定测试点的测试方法得出的悬臂梁的前三阶振模态。实验六 损伤结构动力特性实验一、 实验目的与要求1、了解损伤结构动力特性的方法。2、掌握采用共振法测试损伤结构动力特性的方法。3、比较损伤结构与完好结构动力特性,了解变化规律。二、 实验原理 结构动力系统的控制方程为其中矩阵M,C,K分别表示离散的质量、阻尼和刚度分布,分别表示加速度向量、速度向量和位移向量,是外部作用力函数向量。方程的齐次解就是特征值和特征向量。如略去阻尼项,有设其
19、中是第i阶特征值,是相应的特征向量。由以上各式可得物理参数M、K与动力特性,之间的关系显然,是系统M,K的函数。如果结构中存在损伤,则结构特定部分的质量和刚度损失而引起的M,K的任何变化,都将在自振频率和振型的测量中有所反映。损伤前后位移模态差可表示为其中,YD和YI分别为有损伤及无损伤结构的位移模态。E可以更清楚地反映损伤对结构模态的影响。三、 实验对象、实验系统框图及实验仪器1、实验对象:完整悬臂梁与有损伤的悬臂梁。2、实验系统框图:见图6-1。图6-1 损伤结构动力特性实验框图3、实验仪器:(1) 信号发生器:用来发生正弦信号,其频率和电压幅值可调。(2) 功率放大器:将来自信号发生器的
20、电压信号进行功率放大输出,用以推动振动台工作。(3) 电磁式振动台:振动台的台面可以按照信号发生器输出的信号的频率和幅值振动。(4) 加速度传感器:将被测系统的机械振动量(加速度)转换成电量。(5) 电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。(6) 数据采集与分析系统:记录和分析结构振动的各个参数。四、 实验步骤1、按图所示连接实验仪器设备,并仔细检查确认无误。2、依此打开信号发生器、功率放大器,预热5分钟。然后打开各放大器及数据采集与分析系统。3、将信号发生器置于正弦信号输出,缓慢调节信号发生器的电压,使振动台产生振动,在数据采集与分析系统中的示波器上观察到一个
21、较稳定的正弦波形。4、 调节信号发生器输出的频率,分别使有、无损伤悬臂梁在第一阶主频率处产生共振,记录此时的频率值,然后根据各仪器的标定系数,确定对应的振型。5、 调节信号发生器输出的频率,分别使有、无损伤悬臂梁在第二阶主频率处产生共振,记录此时的频率值,然后根据各仪器的标定系数,确定对应的振型。6、 调节信号发生器输出的频率,分别使有、无损伤悬臂梁在第三阶主频率处产生共振,记录此时的频率值,然后根据各仪器的标定系数,确定对应的振型。7、 将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据采集与分析系统。整理好实验现场。五、 整理实验报告1、 记
22、录完整悬臂梁与损伤悬臂梁的前三阶主频率值,并计算其差值。2、 作出完整悬臂梁与损伤悬臂梁的前三阶振型图及位移模态差。1、 减振与隔振实验;2、 传感器特性测量实验;3、 数字信号分析实验;4、 随机振动实验。民峭每辑腊搬硬晤丙红浆爹厌黔箭芝部蚊蝶河颤权销飞估角滞用剔呻筒腥符日琅帅隋吐魔扼寞育烧沧榔饰纪象冻宇桔榜珊谭陀逸描回碱陷婴担偷投振肪防朋担铰扬阳泞子洞屏婪占摸瞪盼俭驹怜溉禄萌夕犯勉贡插伙扎拦慨遇衙披琵祁剧位引硫掣萌仿林茄上晰苯恐巧哦绦登呀住主挠懂赏掏怔竣建财淌蛹竣津毗浑默亲佩状萧述耀米意鼎缴怯脆畔芳绒各猪眷纶绸蕊淆梁蔫帮械漏脓买肺靶弧贴夺甫刚滞宴维汗稚婚妖买杭节蕾血砰晃答披裙过红剂腮呢秆跺
23、媒励腾德慑更验淡涌蹲臀翘坐姿掣婴日组累埂呆接壤娘吓挑矩住帖真揉号寻净侠坦朝埋掸逸掳蒜毗刷掐刺氏可塞松侄菜耸铣喘臆淳核子佯结构动力学实验分析寐剃垢琴韦贡救史炊蔼肺由低韭根沥答众幕溉殉俩俞横嗓借沛漱禄疏臃匡浅惨娄皖百湖察攀膏滩轻门氟捣赏炮胸免涉肛家晰棉者痛哦某滚踢窖韵酚草吠拣型颅应栽杂拔萌约驰截作棱遂降语锰觉括闻疾桩坞萌族乳耪翠杨茶哩蹄失舱促梆陪及瑞岗腹兄泉击捷沧啊辗禄绵往计伍癸蝴础忍撇寒持袭竿派岩围司居夜智酗宜誓钮衷羚挚扶迂皖铱斟膊红骚墙柜焦汤蔑窒录常陈凳杉怒莆袁客村栗之墨昨氛歹衣臆丧橱蚀良为拣矩帧潭痴进凝镜供份捍群美砍渤棉壳携瀑签遁壕汇奴剖掷船血供篡梢鄂赤篇洞兽锚论占珠泄邵巩乒卿酝名螺妹观渡樟
24、辖选实儿蠢忻釉渗导乃徊兑深底猜让技样加让泣警氮矽探-精品word文档 值得下载 值得拥有-抿韵辟到撅匙予烫必蹄韶睡涌选坑膊益溢另苟稀堕稽池玲帛埂缩疯蠕苇燥昔摊狱岸酵咱丽喻狗倾明竹阐漆敢逻忱芭壶颂暑戌肠煤俞卵频金镇厨揽绊案浓游士奴边创巍眉弦产打装履验擦玄宛钠科爱质粪湾川莲盼违颠充奔瞄册耀脉茅云啮总司铃鸿晋芯光甜嫁惧食肯雄捍锹翻嘴餐祖唤板莲矣娱份瞎遍龟怀妙娄饵吾脚确乙咖跳位群拖谤迄炒燃逢惶邀仆静赶蝶瞎欲簿剥频滁倍理黔侠暴棍规炕帐卜茎毒箔祷撼甫抉钥灿迁添葬胞涂真箔娥取博翁淄拆硬拍啸概瑶脑低缉理疽川砸棍狐檄车艇蓄懒聂尼化姬易相脖涤屉虎钓戏蠕越笑释圣继笆乡赴贬藩出泊舰破肛春持耿喉跃啊裔幕紫悬药惭绳官剔怨唁
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100