ImageVerifierCode 换一换
格式:PDF , 页数:13 ,大小:149.79KB ,
资源ID:2054281      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2054281.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结.pdf)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结.pdf

1、初二动点问题解题技巧所谓“动点型问题动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键关键:动中求静动中求静.数学思想:分类思想分类思想 函数思想函数思想 方程思想方程思想 数形结合思想数形结合思想 转转化思想化思想注重对几何图形运动变化能力的考查。注重对几何图形运动变化能力的考查。从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程

2、,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等研究历年来各区的压轴性试题,就能找

3、到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点专题一:建立动点问题的函数解析式专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定

4、理建立函数解析式。二、应用比例式建立函数解析式。三、应用求图形面积的方法建立函数关系式。专题二:动态几何型压轴题专题二:动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、以动态几何为主线的压轴题。(一)点动问题。(二)线动问题。(三)面动问题。二、解决动态几何问题

5、的常见方法有:1、特殊探路,一般推证。2、动手实践,操作确认。3、建立联系,计算说明。三、专题二总结,本大类习题的共性:1代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数2以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。专题三:双动点问题专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著

6、称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。2 以双动点为载体,探求结论开放性问题。3 以双动点为载体,探求存在性问题。4 以双动点为载体,探求函数最值问题。双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。专题四:函数中因动点产生的相似三角形问题专题四:函数中因动点产生的相似三角形问题 专题五:以圆为载体的动点问题专题五:以

7、圆为载体的动点问题动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。例例 1 1.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒 1 个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒 2 个单位长的速度移动,当B,E,F三点共线时,两点同时停止运动设点E移动的时间为t(秒)(1)求当t为何值时,两点同时停止运动;(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(3)求当t为何值时

8、,以E,F,C三点为顶点的三角形是等腰三角形;(4)求当t为何值时,BEC=BFC例例 2.2.正方形边长为 4,、分别是、上的两个动点,ABCDMNBCCD当点在上运动时,保持和垂直,MBCAMMN(1)证明:;RtRtABMMCN(2)设,梯形的面积为,求 与 之间的函数关系式;BMxABCNyyx当点运动到什么位置时,四边形面积最大,并求出最大面MABCN积;(3)当点运动到什么位置时,求此时 的MRtRtABMAMNx值ABCDEFODMABCN例 3.如图,在梯形ABCD中,动点从354 245ADBCADDCABB,M点出发沿线段以每秒 2 个单位长度的速度向终点运动;动点BBCC

9、同时从点出发沿线段以每秒 1 个单位长度的速度向终点运NCCDD动设运动的时间为 秒t (1)求的长。BC(2)当时,求 的值MNABt(3)试探究:为何值时,为等腰三角形tMNC例例 4 4.如图,在 RtAOB中,AOB90,OA3cm,OB4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为 1cm/秒,设P、Q移动时间为t(0t4)(1)求AB的长,过点P做PMOA于M,求出P点的坐标(用t表示)(2)求OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,yAOMQPBxADCBMN当t为何值时,S有最大值?最大是

10、多少?(3)当t为何值时,OPQ为直角三角形?(4)若点P运动速度不变,改变Q 的运动速度,使OPQ为正三角形,求Q点运动的速度和此时t的值.动点练习题答案例 1.解:(1)当B,E,F三点共线时,两点同时停止运动,如图2 所示(1 分)由题意可知:ED=t,BC=8,FD=2t-4,FC=2tEDBC,FEDFBCFDEDFCBC解得t=42428ttt当t=4 时,两点同时停止运动;(3 分)(2)ED=t,CF=2t,S=SBCE+SBCF=84+2tt=16+1212t2即S=16+t2(0 t 4);(6 分)(3)若EF=EC时,则点F只能在CD的延长线上,图 2ABCDEFEF2

11、=,222(24)51616ttttEC2=,=t=4 或t=0(舍222416tt251616tt216t 去);若EC=FC时,EC2=,FC2=4t2,=4t2;222416tt216t 433t 若EF=FC时,EF2=,FC2=4t2,222(24)51616tttt=4t2t1=(舍去),t2=251616tt168 3168 3当t的值为 4,时,以E,F,C三点为顶点433168 3的三角形是等腰三角形;(9 分)(4)在 RtBCF和 RtCED中,BCD=CDE=90,2BCCFCDEDRtBCFRtCEDBFC=CED(10 分)ADBC,BCE=CED若BEC=BFC,

12、则BEC=BCE即BE=BCBE2=,=6421680tt21680ttt1=(舍去),t2=168 3168 3当t=时,168 3BEC=BFC(12 分)例 2.解:(1)在正方形中,ABCD,490ABBCCDBC,AMMN,90AMN,90CMNAMB在中,RtABM90MABAMB,CMNMAB,RtRtABMMCN(2),RtRtABMMCN,44ABBMxMCCNxCN,244xxCN,22214114 4282102422ABCNxxySxxx 梯形当时,取最大值,最大值为 102x y(3),90BAMN 要使,必须有,ABMAMNAMABMNBM由(1)知,AMABMNM

13、C,BMMC当点运动到的中点时,此时MBCABMAMN2x 例 3.解:(1)如图,过、D分别作AKBC于K,DHBC于ANDACDBMH,则四边形ADHK是矩形3KHAD 在RtABK中,2sin454 242AKAB A2cos454 242BKAB AA在RtCDH中,由勾股定理得,22543HC 43310BCBKKHHC(2)如图,过D作DGAB交BC于G点,则四边形ADGB是平行四边形MNABMNDG3BGAD1037GC 由题意知,当M、N运动到t秒时,102CNtCMt,(图)ADCBKH(图)ADCBGMNDGMNNMCDGC又CCMNCGDCCNCMCDCG即10257tt

14、解得,5017t(3)分三种情况讨论:当NCMC时,如图,即102tt103t 当MNNC时,如图,过N作NEMC于E90CCDHCNEC,NECDHCNCECDCHCADCBMN(图)(图)ADCBMNHE即553tt258t 当MNMC时,如图,过M作MFCN于F点.1122FCNCt90CCMFCDHC,MFCDHCFCMCHCDC即1102235tt6017t 综上所述,当103t、258t 或6017t 时,MNC为等腰三角形例 4.(1)由题意知:BD=5,BQ=t,QC=4-t,DP=t,BP=5-tPQBC BPQBDC 即 BCBQBDBP455tt920t当时,920tPQ

15、BC3 分(2)过点 P 作 PMBC,垂足为 MBPMBDC 355PMt4 分)5(53tPM=tS21)5(53t815)25(103t5 分(图)ADCBHNMF当时,S有最大52t 值6 分158(3)当 BP=BQ 时,tt 57 分25t当 BQ=PQ 时,作 QEBD,垂足为 E,此时,BE=2521tBPBQEBDC 即 BDBQBCBE5425tt9 分1325t当 BP=PQ 时,作 PFBC,垂足为 F,此时,BF=221tBQ BPFBDC 即 BDBPBCBF5542tt11 分1340t,均使PBQ为等腰三角形 14013t 252t 32513t 12 分深本数学,一种独特数学方法,五年成就千万富翁深本数学,一种独特数学方法,五年成就千万富翁

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服