ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:145.63KB ,
资源ID:2054177      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2054177.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(输送机-毕业论文-外文文献翻译中英文对照.docx)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

输送机-毕业论文-外文文献翻译中英文对照.docx

1、 外文文献原文 STUDY ON BOUNDARY NOTCH OF CEMENTE CARBIDE CUTTING TOOL1 WANG Guicheng, PEI Hongjie, LI Qinfeng , ZHANG Chun Jiangsu University, Zhenjiang, Jiangsu, 212013 China Abstract The performance of cemented carbide cutting tools directly influence machining quality of the machined workpie

2、ce .In this paper, the forming mechanism of boundary notch of cemented carbide cutting tool is studied, related theories analyzed, a definition of the boundary notch size presented, and main factors to influence boundary notch of tool pointed out. Besides forming process and change lay of the bounda

3、ry notch of tool are found out, and a certain number of measures to decrease and control the boundary notch of tool have been advanced. Key words boundary notch; cemented carbide cutting tool; cutting burr; corner radius; tool cutting edge angle 1 INTRODUCTION The wear and boundary notch of ceme

4、nted carbide cutting tools are often found in the machining. They directly influence machining quality of the machined workpiece and the cutting performance and life of the cutter. Especially, in the precision machining, flexible manufacturing system (FMS) and other automation manufacture, wear and

5、boundary notch behaviors of cemented carbide tools are even more important. Metal cutting experiences have expounded that wear and boundary notch of the cemented carbide cutting tools are more serious in the machining of the workpiece in which the strain hardening is high and the remaining is not ev

6、en. It seriously influences the machining quality of the machined piece and the cutting performance and life of the cutter. But, so far, there has not been much research on the boundary notch mechanism of cemented carbide cutting cutter, and the technical measures to reduce boundary notch of cemente

7、d carbide cutting tools are fewer[1,2]. So that, the based on the machining experiments of friction welded joint, this research focuses on the forming processes and main rules of the boundary notch, and has developed several measures to resist or lessen boundary notch, which provides a theoretical a

8、nd experimental base to ensure cutting performances of cutters and machining quality. 2 THE FORMING PROCESS AND MAIN SIZE OF BOUNDARY NOTCH The boundary notch of cemented carbide cutting tools is a wear area, which is relatively large, resulting from friction between main cutting edge and the surf

9、ace of the workpiece as the following Fig.1. Fig.1 (a) shows a traditional wearing type of the flank. The rake face Ar and flank face Aa are also shown. Fig.1 (b) shows the main dimension of boundary notch of the lathe tool, in which VN represented the height of boundary notch and C refers to the wi

10、dth. It is apparent that the greater the dimensions of VN and C are, the greater it destroys the performance of tools and influences the machining quality[3,4]. By experiment, the forming process of the boundary notch can be divided into the following three steps: firstly, several micro cracks are

11、 produced at main cutting edge. Secondly, the mesh fractures are found in the boundary areas and they will spread. Finally, the piece material will be denuded and the boundary notch is formed. In the subsequent cutting process, the dimension of the boundary becomes bigger and bigger. Fig. 2 shows t

12、he forming process of boundary notch of the cemented carbide cutting tools. Main factors to influence boundary notch are mechanical performance of the piece material, the cutter material, and geometry parameter of the cutter. The following experiments were carried out in order to expound the formin

13、g mechanism and evolution rules of the boundary notch.. Fig. 1 Boundary notch of the cemented carbide cutting tool in turning Fig.2 Forming process of boundary notch of the cemented carbide cutting tools. 3 EXPERIMENT CONDITIONS AND TESTING MEASURES The lathe C6130 and reversible cutting to

14、ol are used in the experiment. Five cutter materials are employed. Main mechanical parameters of cutter material are shown in Table 1. The machining piece is the friction-welded line of the single hydraulic pillar. The width of the welded line is 15mm and the machining allowance is 5.5mm. Besides,

15、the above pillar is welded with 270SiMn and 45# steel. The relatively mechanical performances of the welded line are shown in Table 2. Based on manufacturing experience and relative information in China and other countries about similar machining process, the chosen machining and tool geometry para

16、meters are shown in Table 3. The boundary notch dimensions of the cemented carbide cutting tools (boundary notch height VN and width C are directly attained by tool microscope. In order to ensure reliability of the results, repeated experiments are carried out. The recurrent performance is good. 4

17、 EXPERIMENT RESULTS AND ANALYSIS 4.1 Cutter Materials For different cutter materials, as shown in Fig. 3, the machining performance and the ability to resist boundary notch are distinctly different. From Fig. 3, we can find the boundary notch dimensions are relatively large when YD10,YD15 and YW

18、are used. Whereas the boundary notch dimension is smallest when YTS25 is used. Because of the asymmetry allowances impacts and vibrations will take place. YTS25 cutter has better impact-resisting performance and boundary notch dimension. Therefore, YTS25 cutter material is selected to do the followi

19、ng experiments. Table 1 Material Performances of Cutters Type Material Performance Remark HRA σb(kg/mm2) Γ(g/cm2) YD10 YD15 707 YW2 YTS25 ≥92 ≥90.5 ≥92 ≥91 ≥91 ≥130 ≥125 ≥145 ≥150 ≥200 12.4~112.8 11.5~12.1 11.8~12.5 12.7~1.3.3 12.8~13.2 North tools North tools ZiGong Z

20、hugong Zhuzhou Table 2 Mechanical Performances of Cutters Item Tensile strength Elongation rate Shrinkage rate Impact toughness σb (kg/mm2) δ (%) T (%) Αk (kg/cm2) 270SiMn 100 12 40 5 45# 61 16 40 5 Welding Line 64.6~82 5.5~ 13 37.6~46.2 3.5~6.4 Table 3 Cutting Paramet

21、ers Cutting velocity V (m/min) 75 Cutting depth αp (mm) 5.5 Feed rate f(mm/r) 0.3 Rake angle γ0 (□ 10 Clearance angle α0 (□ 8 Cutting edge angle Kr (□ 845 ; 75 ; 90 Edge inclination λs (□ -5 Negative chamfer bα1 (mm) 0.1; 0.2; 0.3 Cutter corner radius rε(mm) 0.2; 0.4; 0.8 4.2 I

22、nfluences of Cutting Edge Angle The results of the variety boundary notch are shown as in Fig. 4 when the cutting edge angle is changed. From Fig. 4 we can find that, with the lessening of the cutting edge angle Kr , the dimensions of the boundary notch decrease. The reason is that with the lesseni

23、ng of the cutting edge angle Kr , the length of the cutting edge that acts on cutting becomes larger and the average loads on the cutting edge become lighter. 4.3 Influences of Cutter Corner Radius rε The results of the variety boundary notch with the cutter corner changing are shown as Fig. 5.The

24、 boundary notch dimension decreases with the cutter corner radius rε becoming lesser. The reason is that with the increasing of the cutter corner radius, the impact-resistance performance. Fig. 3 Different boundary notch results to different utter material Fig. 4 Influences of cutting edge ang

25、le Kr increases and the volume of the cutter that endures heat becomes larger. Therefore, under the same cutting conditions, boundary notch dimensions (VN, C) decrease when the cutter corner radius becomes lesser. 4.4 Influences of Negative Chamfer bαl The experiment results of the variety bounda

26、ry notch are shown as in Fig. 6 when the width of the negative chamfer is changed. The dimension of the boundary notch will decrease when the width of the negative chamfer bαl decreases. Therefore, in order to resist or decrease the cutter boundary notch, the lesser negative chamfer bαl should be ch

27、osen. 4.5 Deburring Machining Process The burrs have some influences on cutter boundary notch in metal machining process. A deburring cutter is chosen to decrease the adverse influence on cutter. A different result between deburring machining process and common machining process is shown as in Fig

28、 7. It can be seen that about 75% of the boundary notch is decreased. So, burr is a main factor to produce and increase the boundary notch of the cutter. Fig.5 Influence of cutter corner radius R Fig.6 Influences of negative chamfer width Fig.7 Deburring machining process and common machin

29、ing process 5 CONCLUSIONS From above experimental research and theoretical analysis, the following conclusions are attained: 1) Boundary notch of the cutting tool can be expressed by boundary notch height VN and boundary notch width C. The forming processes of boundary notch can be divided into t

30、hree steps:micro-tipping appears firstly; Then, mesh fractures expand; Finally, boundary notch results. (2) Main factors that influence boundary notch of cemented carbide cutter are piece material,cutter material and cutter geometry parameters. (3) Deburring machining process and adjusting cutting

31、 tool geometry parameters (to reduce edge angle Kr and width of negative chamfer bαl, to increase cutter corner radius rε) can be chosen to decrease effectively boundary notch, which ensures the quality of workpiece and cutting performances of cutting tool. ACKNOWLEDGEMENTS The authors are gratefu

32、l to Natural Science Foundation of P.R.C. for support of this project(Grant No. 59775071 and 50275066). REFERENCES [1] WANG Guicheng. Inner Stress in the Surface of Brazed Cemented Carbide Cutting Tool.Cemented Carbide.1989,6(4):p.169~172(in Chinese) [2] WANG Guicheng. Cutting Performances of Bra

33、zed Cemented Carbide Cutting Tool. Cemented Carbide. 1993, 10(1):p.69~72(in Chinese) [3] ZHOU Zehua. The Principles of Metal Cutting. Shanghai: Shanghai Science and Technology Press,1985(in Chinese) [4] ZHANG Youzhen. Metal Cutting Theory. Beijing: Aviation Industry Press, 998(in Chinese)

34、 关于硬质合金刀具刀刃磨损的研究 王桂城,裴鸿杰,李庆丰,张春 江苏大学,中国江苏镇江 摘要 硬质合金刀具的性能直接影响到工件的切削质量。在这篇文章里,研究了刀具磨损的形成机制,分析相关理论,提出了刀具磨损尺寸的定义,并且指出了刀具磨损的主要因素。除硬质合金刀具的形成过程和变动位置以外发现, 并且一定数量的措施减少和控制硬质合金刀具被推进了。 关键词 刀刃磨损;硬质合金刀具; 切口毛刺; 角落半径; 工具切断边缘角 1.介绍 硬质合金刀具的刀刃的磨损在加工中经常发现。它们直接地影响以机器制造的工件和切

35、削质量和刀具的寿命。尤其,在精密机加工中,柔性制造系统(FMS)和硬质合金刀具的其他自动化制造系统中,擦损和刀刃磨损轨迹更重要。金属制的痕迹已经解释了擦损和硬质合金刀具的刀刃磨损在工件的机加工在高应变硬化中哪一个更严重和甚至没有剩余的情况。它严重地影响机器制造的工件质量和切断的性能和刀具的寿命。但是,迄今为止,在硬质合金刀具的刀刃磨损机构和专门技术措施上,都使硬质合金刀具的界线凹槽变得越来越小。因此,以磨擦熔接接合的机制实验为基础,这一个研究把重心集中在刀刃磨损的形成程序和干管尺,而且已经发展数个的措施抵抗或者减小界线凹槽,这提供一个理论上的和经验性的碱确保刀具的切断性能和切削质量。 2 刀

36、刃磨损形成原因和主要尺寸 硬质合金刀具的磨损是一个擦损面积,是相对地大的,由于主要的刃口和工作件的表面之间的磨擦,如图1所示。图1(a)显示了传统侧面的磨损类型,Ar倾斜面 Ar 和侧面Aa面在如图1(b)中也显示。显示车刀的凹槽的主要尺寸,和的刀刃磨损,在车床中VN代表刀刃磨损的高度。C代表它的宽度,这样看起来,VN和C的尺寸越大,那么它破坏刀具工具的性能和影响机制质量的机会越大。 根据实验, 刀刃磨损的形成方法被分成三步: 第一,数个的微观裂解在主要的刃口被提出展现。 第二, 网眼破面在界线面积和他们被发现将会扩展。 最后,块材料将会被使裸露,而且凹槽被形成。 在后成的切削过程中,刀

37、刃磨损的尺寸会变得越来越大。 图1 侧刀面的磨损类型 图2 硬质合金刀具和刀刃磨损的形成原因 影响刀刃磨损的主要因素是刀具的材料的机械性能,刀具材料和几何参数。 下列的实验操作是为了解释边界尺寸的形成机理和刀具磨损的扩展尺寸。 3 实验条件和测试措施 车床 C6130 和可逆刀具在实验被使用。 五种刀具材料被使用。刀具材料的主要机械参数如表1。 机制块是单一状柱的磨擦焊接线。 被焊接的线的宽度是 15个毫米,而且切削裕度是 5.5毫米。此外,上述的柱形物是用270SiMn和 45#钢一起焊接。被焊接的线的相对机械性能在表2被显示。 在类似物机制方法中国和其他的国家中以制

38、造业的经验和有关情报上,被选择的机制和工具几何参数在表 3被显示。 硬质合金刀具的边界凹槽尺寸(界线凹槽高度VN 和宽度C由工具得到。为了要确保结果的可靠度, 反复的实验被实行。 再利用的性能很好。 4 实验结果分析 4.1 刀具材料 对于不同的刀具材料,如图3所示,机制性能和刀刃磨损的抵抗能力是显然地不同的。从图3,我们能找刀刃磨损尺寸是相对地的大,当YD10,YD15和YW 被使用的时候。然而当 YTS25被使用的时候,刀刃磨损尺寸很最小。因为不对称现象公差挤入,而且振动将会发生。 YTS25 刀具有得更好抗拒碰撞的性能和刀刃磨损尺寸。 因此, YTS25 刀具材料被选择做跟随实验

39、 表1切削刀具的材料性能 类型 材料性能 标记 HRA σb(kg/mm2) Γ(g/cm2) YD10 YD15 707 YW2 YTS25 ≥92 ≥90.5 ≥92 ≥91 ≥91 ≥130 ≥125 ≥145 ≥150 ≥200 12.4~112.8 11.5~12.1 11.8~12.5 12.7~1.3.3 12.8~13.2 North tools North tools ZiGong Zhugong Zhuzhou 表2 切削刀具的机械性能 代号 抗拉强度 伸长率 伸缩率 冲击韧性 σb (k

40、g/mm2) δ (%) T (%) Αk (kg/cm2) 270SiMn 100 12 40 5 45# 61 16 40 5 Welding Line 64.6~82 5.5~ 13 37.6~46.2 3.5~6.4 表3 切削参数 切削速度 V (m/min) 75 切削深度 αp (mm) 5.5 径给速度 f(mm/r) 0.3 前角 γ0 (□ 10 后角 α0 (□ 8 切削刃0角 Kr (□ 845 ; 75 ; 90 边缘倾斜尺寸 λs (□ -5 负切削尺寸 bα1 (mm) 0.1; 0.

41、2; 0.3 切削角半径 rε(mm) 0.2; 0.4; 0.8 4.2 刃口角的影响 当刃口角被改变的时候,变化凹槽的结果在图 4 中被显示。从图4我们能发现随着切削刃口角 Kr的减少,刀刃磨损尺寸也相应减少。理由是刃口角 Kr 的减少是那 , 刃口的长度那一个作用于槽的边缘变大和平均负载力变得比较轻。 4.3 刀具半径半径r的影响 变化界线的结果随着刀具刻凹痕的改变在图 5中显示。和刀具的刀刃磨损尺寸减少,墙角半径半径r也相应减少。理由是刀具的半径墙角变大,耐冲击性能也增大,耐久热的增加和刀具的尺寸也变大。 因此,依据相同的切削条件规定,当刀具墙角半径变得比较小的时候,界线

42、刻凹痕尺寸(VN,C)也减少。 4.4 负倒角 bal的影响 不同刀刃磨损的实验结果如图 6所示。当负倒角的宽度被改变的时候。刀刃磨损的尺寸将会减少负倒角 bal的宽度何时减少。 因此, 为了要抵抗或者减小刀具刀刃磨损尺寸, 比较小的负倒角 bal应该被选择。 4.5 修边机制方法 凿纹在金属制的机制方法的刀具刀刃磨损上有一些影响。 一个修边刀具被选择在刀具上可以减少它的负面影响。不同的修边机制方法和普通机制方法之间的结果如图7所示,它能被预期大约75%的刀刃磨损被减少。 因此, 凿纹是一个主要的传递因数,来增加刀具的刀刃磨损尺寸。 图5 切削工人角落半径R的影响

43、图6 负磨损宽度的影响 Fig.7去除毛刺机器加工过程和通用机器加工过程 5 结论 从上述的经验性的研究和理论上的分析,可得到如下的结论: 1) 刀具的刀刃磨损一般用刀具的刀刃磨损高度 VN 和刀刃磨损宽度C来表达,刀具磨损的形成分成三步:微步倾角; 然后, 网面尺寸扩大; 最后,刀刃磨损产生。 (2) 影响硬质合金刀具的刀刃磨损的因数是修补材料,刀具材料和刀具几何学参数。 (3) 修边机制方法和调整刀具几何参数 ( 减少负倒角 bal的边缘角 Kr 和宽度, 增加刀具墙角半径半径ε) 能被选择有效地减少边界凹槽, 这确保刀具的工作件和切削性能的质量。 作者对P.R.C.的自然科学基金会工程的支持(许可证号59775071和50275066)表示衷心的感谢。 参考文献 [1] 王桂城.焊接硬质合金刀具的表面的内部应力.(中国).19896(4): p.169~172(中国) [2] 王桂城.焊接硬质合金刀具的性能. 1993,10(1):p.69~72(中国) [3] 周子华. 金属切削原理。 上海: 上海科学与工艺出版社,1985(中国) [4] 张佑正.金属切削理论. 北京: 航空工业出版社床,1998(中国)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服