1、1山东版 六年级上第一章 丰富的图形世界1.1.1 生活中的立体图形 多角度观察、认识立体图形。1.1.2 图形是由点(point)、线(line)、面(plane)、构成的。点动成线,线动成面,面动成体。1.2.1 展开与折叠1、在棱柱中,任何相邻两个面的交线都叫做棱(edge),相邻两个侧面的交线叫做侧棱。2、人们通常根据棱柱底面图形的边数,将棱柱分为三、四、五.棱柱。长方体和立方体都是四棱柱。3、认识棱柱的顶点、棱、面。1.2.21、将立方体沿某些棱剪开,认识其平面图形。2、了解正多边形:边长相等,角也相等的多边形。1.3 截一个几何体1、用一个平面去截一个几何体,截出的图形叫截面。2、
2、认识不同的截面。1.4 从不同方向看1、从不同方向,不同角度观察立体图形、物体画出不同的视图。2、主视图:把从正面看到的图叫做主视图;俯视图:从上面看到的图叫俯视图;左视图:从左面看到的图叫左视图。3、俯视图通常画在主视图的下面,左视图通常画在主视图的左面。1.4.2画几何体的主视图、俯视图、左视图。1.5 生活中的平面图形1、三角形、四边形、五边形、六边形等都是多边形(polygon),它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。2、圆上 A、B 两点之间的部分叫做弧(arc),由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形(sector).第二章 有理数及
3、其运算2.1 有理数引入负数1、比赛得分与扣分。带“”号的得分比 0 分低。生活中的负数,温度、收支、盈亏等等。2、像 5、1.2、1/2.这样的数叫做正数(positive number),它们都比 0 大。在正数前面加“”号的数叫做负数(negative number),如-10,-3,-1.3、零既不是正数,也不是负数。4、为了突出数的符号,可以在正数前加“+”号,如果+5,+1.2,+1/2.5、我们常常用正数和负数表示一些具有相反意义的量。6、正整数整数(integer)零 负整数有理数分类 正分数2 分数(fraction)负分数2.2 数轴1、数轴:规定了原点、正方向、单位长度的
4、直线。即:画一条水平直线,在直线上取一点表示 0(这个点叫做原点,origin),选取某一长度作为单位长度(unit length)。规定直线向右的方向为正方向(positive direction),就得到了数轴(number axis).它真像一个平放的温度计。2、任何有理数都可以用数轴上的点来表示。3、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数(opposite number),也称这两个数互为相反数。特别地,0 的相反数是 0.4、数轴的几何意义:在数轴上,表示互为相反数的两个点位于原点的两侧,并且它们到原点的距离相等。5、数轴上两个点表示的数,右边的总比左边的大。
5、正数大于 0,负数小于 0,正数大于负数。2.3 绝对值1、在数轴上,一个数所对应的点与原点之间的距离叫做该数的绝对值(absolutevalue).(几何意义)2、互为相反数的两个数的绝对值有什么关系呢?3、正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0.(代数意义)4、两个负数比较大小,绝对值大的反而小。2.4 有理数的加法1、引入加法:球赛进球 1 分,输球1 分则净胜球为 1+(1)=0.用 1 个表示+1,+用 1 个表示1,那么表示 0,同样表示 0.+2、我们也可以利用点在数轴上的移动表示加法运算过程,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。
6、3、两个有理数相加,和的符号怎样确定?一个有理数同 0 相加,和是多少?有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数。2.4.2 在有理数运算中,加法的交换律,结合律仍然成立。加法的交换律(commutative law):两个数相加,交换加数的位置,它们的和不变。即:a+b=b+a.加法的结合律(associative law):三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变。即:(a+b)+
7、c=a+(b+c).2.5 有理数的减法 减去一个数,等于加上这个数的相反数。即:减法可以转化为加法。2.6 有理数的加减混合运算1、在有理数的加减混合运算中,一切加法和减法的运算,都可以统一成加法运算。在进行运算时,可以适当运用加法交换律和结合律来简化运算。在交换加数的位置时,要连同加数的符号一起交换。2、熟练后,运算步骤可以写得简单些。2.6.23练习混合运算。2.7 有理数的乘法1、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。2、任何数与 0 相乘,积仍为 0.3、乘积为 1 的两个有理数互为倒数(reciprocal).如:-3 与-,与.318338注意:0 没有倒数,
8、a 的倒数为(a0)a14、几个有理数相乘,因数都不为 0 时,积的符号怎样确定?有一个因数为 0 时,积是多少?几个不等于 0 的数相乘,积的符号由负因数的个数来决定。当负因数的个数是奇数时,积的符号为负,当负因数的个数是偶数时,积的符号为正。积的绝对值等于各个因数的绝对值的积。几个数相乘,有一个因数为 0 时,积就为 0.2.7 练习有理数乘法运算乘法的交换律:ab=ba乘法的结合律:abc=a(bc)乘法的分配律:a(b+c)=ab+ac2.8 有理数的除法1、除法是乘法的逆运算。2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0 除以任何非 0 的数都得 0.注意:0 不能作除
9、数。3、除以一个数等于乘这个数的倒数。2.9 有理数的乘方1、乘方的意义:一般地,n 个相同的因数 a 相乘,记作 an.即:aaaa=an(n 个 a相乘)。这种求 n 个相同因数 a 的各的运算叫做乘方(power),乘方的结果叫做幂(power),a 叫做指数(exponent),an.读作 a 的 n 次幂(或 a 的 n 次方)。2.9.2 练习幂运算认识幂乘方法则:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是 0.2.9.3幂的变化率,练习幂运算。2.10 有理数的混合运算先算乘方,再算乘除,最后算加减;如果有括号先算括号里面的。2.11
10、用计算器进行有理数的计算掌握计算器计算时的按键顺序,会用计算器计算。本章小结:1、正整数和零统称为自然数;数 0 既不是正数也不是负数。2、正数前面的“+”号,平时可略去不写,有时为了强调也写上,而负数前面的“”号,切记不能省略。3、任何一个有理数都可以用数轴上的点表示,但数轴上的点不能表示有理数。(数形结合)44、0 没有倒数。5、易出现的思维误区:(1)判断数或字母的正负出现错误,认为凡带有“”号的就是负数。(2)对绝对值的概念不能透彻理解,误认为若,则 a=b.ba(3)对计算符号和性质符号理解不正确,如把 37 理解 3 减去-7,正确的理解是:式子中间的“”可当作运算符号,也可看作性
11、质符号,但只能用一次,对“37”可理解为“正 3 减正 7”或“正 3 加负 7”。(4)在分数乘方中,写法和计算出错,如-,的平方写成,应明确是整个362565252522分数的乘方,还是分子或分母的乘方。(5)运算律使用中出现错误,不明确使用范围。如计算 10()时,误用分配律写3151成 10()=10+10=105+103=50+30=80 的错误形式。31515131第三章 代数式3.1 用字母表示数1、公式、运算律都可以用字母表示。2、字母可以表示任何数。3.2 代数式1、像 4+3(x+1),x+x+(x+1),a+b,ab,2(m+n),等都是代数式,(algebraic ex
12、pression).ts单独一个数或一个字母也是代数式。2、注意:当式子后面有单位时,通常要用括号把式子括起来,如果(a+1)cm;在含有字母的除法里,通常要按照分数的形式书写。例如 st 一般写成.ts3、所谓“代数式”就是用符号来代表数的一种方法。3.2.1练习代数式3.3 合并同类项在代数式 1.5v 中,字母前的数字因数 1.5 叫做它的系数(coefficient),r2h 的系数31是.313.4.11、8n 和 5n 都含字母 n,并且 n 的指数是 1;-7a2b 和 2a2b 都含字母 a 和 b,并且 a 的指数都是-2,b 的指数都是 1,像 8n 与 5n,-7a2b
13、与 2a2b 这样所含字母相同,并且相同字母的指数也相同的项,叫做同类项(like terms),把同类项合并成一项就叫做合并同类项(unite like terms).如 8n+5n=13n,-7a2b+2a2b=-5a2b.2、合并同类项时,把同类项的系数相加,字母和字母的指数不变。3.4 去括号1、括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。52、括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要都要改变。3.5 探索规律 规律是事物之间的内在联系,是客观存在的,人们可以在实践生活中归纳发现它,并利用它服务于社会,人们通常对简单或特殊情
14、况进行观察探索分析,从中发现某些有规律的东西,再验证这种规律的合理性,探索规律就是一种观察、归纳、猜想、验证的过程,体现了从特殊到一般的数学思想。第四章 平面图形及其位置关系4.1 线段、射线、直线1.线段:有两个端点。如自行车轮的辐条,人行横道线都可以近似地看做线段(segment).2.将线段向一个方向无限延长就形成了射线(ray 或 half line).射线有一端点。如手电筒,探照灯所射出的光线可以近似地看做射线。3.将线段向两个方向无限延长就形成了直线(line).笔直的铁轨可以近似地看做直线。直线没有端点。4.经过一点可以画无数条直线;经过两点能且只能画一条直线。也就是说,两点确定
15、一条直线。5.直线、射线、线段之间的联系:线段是直线上任意两点间的部分;射线是直线上一点和它一旁的部分,也可理解为:将线段向一方无限延伸就得到射线;将线段向两方无限延伸就得到直线。4.2 比较线段的长短1.两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离(distance).圆规,直尺截取等长线段。2.两点间的线段是图形,两点间的距离是指它的长度,是一个正数,两者不可混淆。3.点 M 把线段 AB 分成相等的两条线段,AM 与 BM,点 M 叫做线段 AB 的中点(midpoint).这时 AM=BM=AB.214.线段的条数。2)1(nn4.3 角的表示与度量1.角(
16、angle)是由两条具有公共端点的射线组成的图形,两条射线的公共端点叫做这个角的顶点(vertex).角通常用三个字母及符号“”表示,如角可表示为ABC,读作“角 ABC”,中间的字母 B 表示顶点,其他两个字母 A,C 分别表示角的两条边上的点。2.我们还可以用一个数字或字母表示一个角,如ABC 也可以表示成1 或4.4 角的比较*同角或等角的补角相等;同角或等角的余角相等。1.角也可以看成是由一条射线绕着它的端点旋转而成的。2.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角是平角。终边继续旋转,当它又和始边重合时,所成的角是周角。3.AOB 与BOD 有公共顶点和一条公共边,同
17、时,OD 边落在AOB 的内部,这就表明DOB 小于AOB,记作DOBAOB。注意:“”不同于“”小于号。4.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个平分线(angular bisector)。65.余角、补角(或互余、互补)反映的是两个角的大小关系,在说余角或补角时一定要说明是哪个角的余角或补角。6.生活中的象限角:(方位角)轮船,飞机等物体运动的方向与南北方向之间的夹角被称为象限角,领航员常用地图和罗盘对象限角进行测定。生活中有时心正北,正南方向为基准,描述物体运动的方向和位置。如北偏东 30,南偏东 25,北偏西 60。4.5 平行1.在同一平面内,不相交
18、的两条直线叫做平行线(parallel lines)。2.我们通常用“”表示平行,直线 AB 与直线 CD 平行,记作:ABCD,读作:AB平行 CD。如果用 l,m 表示这两条直线,那么直线 l 与直线 m 平行,记作:lm。3.经过直线外一点能且只有画一条直线与这条直线平行。如果这两条直线都与第三条直线平行,那么这两条直线互相平行。4.6 垂直1.如果两条直线相交成直角,那么这两条直线互相垂直(vertical)。2.直线 AB 与直线 CD 垂直,记作:ABCD,读作:AB 垂直于 CD。如果用 l,m 表示这两条直线,那么直线 l 与直线 m 平行,记作:lm。互相垂直的两条直线的交点
19、叫做垂足。3.平面内,过一点能且只作一条直线与已知直线垂直。4.直线外一点与直线上的各点连接的所有线段中,垂线段最短。即:垂线段最短。第五章 一元一次方程5.1 等式与方程1.含有未知数的等式叫做方程(equation)。因此等式的性质适合于所有方程。2.使方程的两边相等的未知数的值叫做方程解(solution)。3.求方程的解的过程叫做解方程。4.在一个方程中,如果只含有一个未知数(元),并且未知数的指数是 1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。*我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。一元方程的解也叫做根
20、。5.1.2 等式基本性质1.等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。2.等式两边同时乘同一个数(或除以同一个不为 0 的数),所得结果仍是等式。3.把求出的解代入原方程,可以知道你的解对不对。5.2 解一元一次方程1.移项:把原方程中的某项改变符号后从方程的一边移到另一边,这种变形叫做移项(transposition of terms).5.2.2 练习一元一次方程。步骤:去分母 去括号 移项 合并同类项 系数化为 1 检验。次序有时可变,但都根据等式性质变形。最终把一个一元一次方程“转化”成 x=a 的形式。5.3 一元一次方程的应用1、如何设未知数,练习设未知数。2、方
21、程法解题和算术法解题的主要区别在于:算术法中未知数参入到算式中。73、解应用题中的检验不仅要检验未知数的值是否是原方程的解,还要检验未知数的值是否符合实际问题。5.3.2列方程时,关键是找出问题中的等量关系。5.3.3用一元一次方程解实际问题时的一般步骤:实际问题(抽象)数学问题(分析)已知量,未知量,等量关系 不 列 合 出 理 解释 (合理)解的合理性 (验证)方程的解 (求出)方程2.列方程解应用题的要点:审审题,弄清题意和问题中的数量关系;设设未知数,用字母 x 表示问题中的一个未知量,一般采用直接设法,有时也采用间接设法;列列方程,利用问题是的一个等量关系列方程;解解方程,求出未知数
22、的值,若采用间接设法,还须转求所需未知量的值;答检验所求解是否符合题意,写出问题的答案。5.3.4练习一元一次方程的应用(设不同的未知数)5.3.5一元一次方程解追及问题,求时间,路程。一般画出线段图,关系就清楚了。5.3.6一元一次方程解银行储蓄问题。用计算器帮助解。本章小结:1、探索具体问题中的等量关系是列方程的关键,也是本章的重点和难点,下面是找等量关系的几种常用方法。(1)学会用不同的方式表示同一个量。(2)善于利用“总量等于各个分量之和”这个基本的相等关系。(3)分析问题中的不变量,利用不变量找相等关系。(4)熟练掌握一些基本量的关系如:路程=速度时间;工作量=工作效率工作时间等。(
23、5)画示意图,帮助分析具体问题中的相等关系,体会数形结合思想的应用。(6)分析题目中的关键词,如“多”“少”“增长”等。1、解决实际问题常见题型:(1)工作(工程)问题:(2)比例问题;(3)年纪问题;(4)浓度问题;(5)利息问题;(6)行程问题;(7)数字问题;(8)商品利润率问题等。2、思维误区:(1)在解方程时常出现移项不变号,错把解方程过程写成连等形式;(2)去分母时出现漏乘现象,去括号时,若括号前面是负号时,括号内的各项忘记变号。(3)用方程解应用题时,不善于找相等关系,或单位名称不统一,或没有检验是否符合实8际意义,就盲目作答。第六章 生活中的数据6.1 科学记数法1.一般地,一
24、个大于 10 的数可以表示成 ax10n的形式,其中 1a10,n 是正整数。这种记数方法叫做科学记数法。(scientific notation)6.2 扇形统计图生活中,遇到的统计图,它们都是利用圆和扇形来表示总体和部分之间的关系。即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形面积的大小反映了部分占总体的百分比的大小。这样的统计图叫做扇形统计图(sector statistical chart).6.2.21.顶点在圆心的角叫做圆心角。2.在扇形统计图中,每部分占总体的百分比等于该部分所对应扇形的圆心角度数与 360的比。3.根据圆心角的度数,画出扇形统计图。6.3 统计图的选择1.特点:条形统计图能清楚地表示出每个项目的具体数目。折线统计图能清楚地反映事物的变化情况。扇形统计图能清楚地表示出各部分在总体中所占的百分比。
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100