1、高二数学期中考知识点归纳资料第一章 解三角形1、三角形的性质:.A+B+C=, , .在中, c , c ; AB, ABcosAcosB, a b AB .若为锐角,则,B+C ,A+C ; ,2、正弦定理与余弦定理: .正弦定理: (2R为外接圆的直径) 、 (边化角)、 、 (角化边) 面积公式: .余弦定理:、 、 (角化边)3、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式: . ,数列是定义域为N的函数,当n依次取1,2,时的一列函数值 . 的求法:i.归纳法ii. 若,则不分段;若,则分段iii. 若,则可设解得m,得等比数列iv. 若,先求,再构
2、造方程组:得到关于和的递推关系式例如:先求,再构造方程组:(下减上)2.等差数列: 定义:=(常数),证明数列是等差数列的重要工具。 通项: ,时,为关于n的一次函数;0时,为单调递增数列;0时,为单调递减数列。 前n项和: ,时,是关于n的不含常数项的一元二次函数,反之也成立。 性质:i. (m+n=p+q) ii. 若为等差数列,则,仍为等差数列。 iii. 若为等差数列,则,仍为等差数列。 iv 若A为a,b的等差中项,则有。3.等比数列: 定义: (常数),是证明数列是等比数列的重要工具。 通项: (q=1时为常数列)。.前n项和, ,需特别注意,公比为字母时要讨论.性质:i. 。ii
3、.,公比为。iii. ,公比为。iv.G为a,b的等比中项,4.数列求和的常用方法:.公式法:如.分组求和法:如,可分别求出,和的和,然后把三部分加起来即可。.错位相减法:如, 两式相减得:,以下略。 .裂项相消法:如, 等。.倒序相加法.例:在1与2之间插入n个数,使这n+2个数成等差数列, 求:,(答案:)第三章 不等式1.不等式的性质: 不等式的传递性: 不等式的可加性:推论: 不等式的可乘性: 不等式的可乘方性:2.一元二次不等式及其解法:.注重三者之间的密切联系。 如:0的解为:x, 则0的解为; 函数的图像开口向下,且与x轴交于点,。对于函数,一看开口方向,二看对称轴,从而确定其单调区间等。.注意二次函数根的分布及其应用. 如:若方程的一个根在(0,1)上,另一个根在(4,5)上,则有0且0且0且03.不等式的应用:基本不等式: 当a0,b0且是定值时,a+b有最小值;当a0,b0且a+b为定值时,ab有最大值。简单的线性规划:表示直线的右方区域.表示直线的左方区域解决简单的线性规划问题的基本步骤是: .找出所有的线性约束条件。 .确立目标函数。 .画可行域,找最优点,得最优解。需要注意的是,在目标函数中,x的系数的符号,当A0时,越向右移,函数值越大,当A0时,越向左移,函数值越大。