ImageVerifierCode 换一换
格式:PPT , 页数:57 ,大小:6.79MB ,
资源ID:2046141      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2046141.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二维平面晶体学.ppt)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二维平面晶体学.ppt

1、第四章 二维平面晶体学本章主要讨论可以抽象出二维平面点阵结构的客体的对称性。如晶体的表面,截面等。二维晶体学所见即所得,许多结论可直接推广到三维。10个点群,5种点阵,17个空间群。32个点群,14种点阵,230个空间群。14-1 群论基础(II)4-1-1 共轭,共轭类2.群G中所有元素可分为若干个共轭类,每一元素属于且仅属于G的一个共轭类。定义定义2:群G中的所有相互共轭的元素的集合称为G的一个共轭类。定义定义3:设A,X为两个操作,则满足B=XAX-1的操作B称为与A近似,或称B与A是近似操作。共轭操作要求a,b,x皆为群元素,相似关系A,B,X可不是群元素。若A 是一个方矩阵,则满足B

2、=XAX-1的矩阵B称为A的相似矩阵,相应的变换称为相似变换。互为相似的矩阵间有两个不变量:(1)相似矩阵具有相同的迹。点操作矩阵W的迹Tr(W)不随坐标系选取而变。(2)相似矩阵具有相同的矩阵行列式。点操作矩阵的Det(W)不随坐标系选取而变。3.4.对称操作群中,共轭操作有十分鲜明的几何意义5.交换群的每一个元素自成一个共轭类。对于交换群中的任意两个元素a,b,有ab=ba,即a=bab-1交换群中所有元素对任一元素的共轭变换均将这一元素变为自身。即所有操作都将任一操作的对称要素共轭变换为自身。例:单轴群Cn是交换群,群中的任何旋转都不会改变对称轴的位置。例:C2h是交换群。6.相似操作也

3、有十分鲜明的几何意义:满足B=XAX-1的操作A,B是同类型的操作,X是使操作A的几何要素与操作B的几何要素重合的操作。相似操作关系WB=XWAX-1可以理解为:在B处完成一件产品(WB)等效于将工厂由B处搬到A处(X-1),然后在A处完成制作(WA)最后将工厂由A处运回B处(X)。引入相似操作的便利在于:在B处不易完成的操作,可转化为在A处完成。7.例:证明定理3-3a例:由定理3-1a说明相似旋转操作的几何意义。8.例相似旋转操作的几何意义证明一个重要定理。定理4-1(万花筒原理):证明:如图,将X轴取在镜面mj上,并使之与镜面mi和mj的交线垂直。反映mi将点(x,y,z)操作至(x,-

4、y,z)。mj对(x,y,z)的操作?把对镜面mj的反映转化对镜面mi 反映的表达式。由相似操作的概念9.10.4-1-2 子群,子群的陪集,子群的陪集展开定义1:设H为群G的一个子群,a为G的一个元素,a左乘H的 每一个元素得到的集合aH称为H的一个左陪集,同理 可定义H的右陪集。定理4-2:1)有限群的子群H的每一左(右)陪集中的元素个数 与H中的个数相同。2)H的任何两个左(右)陪集的两组元素或全部相同 或全不同。定理4-3(Lagrange陪集展开定理):群G的阶q为其子群H的阶r 的整数倍。证明11.4-1-3 共轭子群,不变子群定义1:设H为群G的一个子群,g为G的一个元素,则集合

5、 构成一个群,称为H的共轭子群。定义2:若对称操作群中存在着一组对称要素互易位置的操作,则称这组对称要素相互共轭。12.4-1-4 直积群1.外直积群外直积群G具有如下性质:(1)G满足群的定义。(2)G中两个直积因子群H和P都是G的不变子群。(3)G的阶q=rs。13.2.半直积群半直积群G具有如下性质:(1)构成群。(2)G中第一直积因子群H是P的不变子群。(3)G的阶q=rs。14.4-1-5 同构与同态15.两个同构群的一一对应关系不会由于运算而改变定理4-4:n阶群A和n阶群B同构的充要条件是乘法表相同所有的二阶群和三阶群都是同构的。有限群的同构具有传递性。16.同构允许多一对应17

6、.4-2 平面晶体学点群4-2-1 点群的直观体现:对称要素系和对称等效点系点群的客体可以是:宏观晶体,微观点阵,晶体各种物理性质的函数空间等。晶体学点群个数:点群平移对称性限定了晶体对称轴的轴次,所以限定了晶体学点群的个数。对称要素系对称要素系 指点群中各对称操作据以进行的,采取一定空间布局的一组对称要素,简称对称系。有限客体的对称系与该客体之点群包含等价的对称性内容。一个点群唯一地对应一种对称系,一种对称系唯一地对应一种点群。点群的封闭性对应于对称系的完整性在点群的任何对称操作前后,对称系守恒。18.对称系中的共轭和共轭类借助于点群的对称操作来定义。若群中存在使一组对称要素互易位置(但不可

7、辨别)的操作,则称这组对称要素相互共轭相互共轭。相互共轭的一组对称要素组成共轭对称系共轭对称系。4-2-2 第I类点操作(旋转)构成的点群三维空间的对称轴在二维空间退缩为“对称点”。二维平面点群的对称系中不能有两个或两个 以上不重合对称轴。否则产生平移。19.4-2-3 包含第II类点操作(反映)的点群平面中的反演等价于二重旋转,二维空间的反演等价于第I类操作。三维空间的对称面在平面空间内退缩为“对称线”。平面点群的对称系中有两个或两个以上的对称面时,这些对称面必然交于一线,形成对称轴。20.21.4-3 平面点阵4-3-1 平面点阵,基矢,晶胞22.23.4-3-2 五种平面点阵依据点阵的点

8、群对称性来推导二维点阵的所有类型。24.25.26.27.4-3-3 点阵点群28.29.4-4 平面空间群I:点式空间群晶体学空间群是微观晶体对称操作的集合。点阵可视为单个单个同种原子作为点阵点的简单晶体点阵这一特殊晶体的空间群如何表示?30.31.4-4-1 点式空间群的构成,13个点式空间群32.33.(1).二重旋转与点阵平移的组合:新的二重旋转34.(2).4重旋转与点阵平移的组合:新的4重旋转和二重旋转P4空间群的对称系和对称等效点系。对称图案35.(3).3重旋转与点阵平移的组合:新的3重旋转P3空间群的对称系和对称等效点系。36.(4).6重旋转与点阵平移的组合:P6空间群的对称系和对称等效点系。37.(5).反映与平移的组合:38.4-4-2 点式空间群的HM符号39.讨论:40.41.P4空间群的对称系和对称等效点系。42.4-4-3 空间群的基本对称操作,位置点与位置点群43.4-5 平面空间群II:非点式空间群讨论点式空间群时,有两方面的对称性内容尚未考虑:1)空间群的子空间群。2)滑移对称操作。考虑滑移对称操作,引入模数群。44.4-5-1 非点式空间群的构成,模数群45.自洽条件自洽条件 相容条件相容条件46.4-5-2 四种非点式空间群47.48.49.50.51.4-5-3 点阵点的对称性52.53.54.55.56.57.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服