1、 The final edition was revised on December 14th, 2020.考研数学一真题与解析2015年考研数学一真题一、选择题 18小题每小题4分,共32分设函数在上连续,其二阶导数的图形如右图所示,则曲线在的拐点个数为(A)0 (B)1 (C)2 (D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2设是二阶常系数非齐次
2、线性微分方程的一个特解,则 (A) (B)(C) (D)【详解】线性微分方程的特征方程为,由特解可知一定是特征方程的一个实根如果不是特征方程的实根,则对应于的特解的形式应该为,其中应该是一个零次多项式,即常数,与条件不符,所以也是特征方程的另外一个实根,这样由韦达定理可得,同时是原来方程的一个解,代入可得应该选(A)若级数条件收敛,则依次为级数的()收敛点,收敛点 ()收敛点,发散点()发散点,收敛点 ()发散点,发散点【详解】注意条件级数条件收敛等价于幂级数在处条件收敛,也就是这个幂级数的收敛为,即,所以的收敛半径,绝对收敛域为,显然依次为收敛点、发散点,应该选(B)设D是第一象限中由曲线与
3、直线所围成的平面区域,函数在D上连续,则( ) ()()()()【详解】积分区域如图所示,化成极坐标方程:也就是D:所以,所以应该选(B)5设矩阵,若集合,则线性方程组有无穷多解的充分必要条件是(A) (B)(C) (D)【详解】对线性方程组的增广矩阵进行初等行变换:方程组无穷解的充分必要条件是,也就是同时成立,当然应该选(D)6设二次型在正交变换下的标准形为,其中,若,则在下的标准形为(A) (B)(C) (D) 【详解】,所以故选择(A)7若为任意两个随机事件,则( )(A) (B) (C) (D)【详解】所以故选择(C)8设随机变量不相关,且,则( )(A) (B) (C) (D)【详解
4、】故应该选择(D)二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9 【详解】10 【详解】只要注意为奇函数,在对称区间上积分为零,所以11若函数是由方程确定,则 【详解】设,则且当时,所以也就得到12设是由平面和三个坐标面围成的空间区域,则 【详解】注意在积分区域内,三个变量具有轮换对称性,也就是13阶行列式 【详解】按照第一行展开,得,有由于,得14设二维随机变量服从正态分布,则 【详解】由于相关系数等于零,所以X,Y都服从正态分布,且相互独立则三、解答题15(本题满分10分)设函数,在时为等价无穷小,求常数的取值【详解】当时,把函数展开到三阶的马克劳林公式,得由
5、于当时,是等价无穷小,则有,解得,16(本题满分10分)设函数在定义域上的导数大于零,若对任意的,曲线在点处的切线与直线及轴所围成区域的面积恒为4,且,求的表达式【详解】在点处的切线方程为令,得曲线在点处的切线与直线及轴所围成区域的面积为整理,得,解方程,得,由于,得所求曲线方程为17(本题满分10分)设函数,曲线,求在曲线上的最大方向导数【详解】显然在处的梯度在处的最大方向导数的方向就是梯度方向,最大值为梯度的模所以此题转化为求函数在条件下的条件极值用拉格朗日乘子法求解如下:令解方程组,得几个可能的极值点,进行比较,可得,在点或处,方向导数取到最大,为18(本题满分10分)(1)设函数都可导
6、,利用导数定义证明;(2)设函数都可导,写出的求导公式【详解】(1)证明:设由导数的定义和可导与连续的关系(2)19(本题满分10分)已知曲线L的方程为,起点为,终点为,计算曲线积分【详解】曲线L的参数方程为起点对应,终点为对应20(本题满分11分)设向量组为向量空间的一组基,(1)证明:向量组为向量空间的一组基;(2)当为何值时,存在非零向量,使得在基和基下的坐标相同,并求出所有的非零向量【详解】(1),因为,且显然线性无关,所以是线性无关的,当然是向量空间的一组基(2)设非零向量在两组基下的坐标都是,则由条件可整理得:,所以条件转化为线性方程组存在非零解从而系数行列式应该等于零,也就是由于
7、显然线性无关,所以,也就是此时方程组化为,由于线性无关,所以,通解为,其中为任意常数所以满足条件的其中为任意不为零的常数21(本题满分11分)设矩阵相似于矩阵(1)求的值;(2)求可逆矩阵,使为对角矩阵【详解】(1)因为两个矩阵相似,所以有,也就是(2)由,得A,B的特征值都为解方程组,得矩阵A的属于特征值的线性无关的特征向量为;解方程组得矩阵A的属于特征值的线性无关的特征向量为令,则22(本题满分11分)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记为次数求的分布函数;(1) 求的概率分布;(2) 求数学期望【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为显然Y的可能取值为且(2)设23(本题满分11分)设总体的概率密度为其中为未知参数,是来自总体的简单样本(1)求参数的矩估计量;(2)求参数的最大似然估计量【详解】(1)总体的数学期望为令,解得参数的矩估计量:(2)似然函数为显然是关于的单调递增函数,为了使似然函数达到最大,只要使尽可能大就可以,所以参数的最大似然估计量为