ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:2.98MB ,
资源ID:2042788      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2042788.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(考研数学一真题与解析.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

考研数学一真题与解析.docx

1、 The final edition was revised on December 14th, 2020.考研数学一真题与解析2015年考研数学一真题一、选择题 18小题每小题4分,共32分设函数在上连续,其二阶导数的图形如右图所示,则曲线在的拐点个数为(A)0 (B)1 (C)2 (D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2设是二阶常系数非齐次

2、线性微分方程的一个特解,则 (A) (B)(C) (D)【详解】线性微分方程的特征方程为,由特解可知一定是特征方程的一个实根如果不是特征方程的实根,则对应于的特解的形式应该为,其中应该是一个零次多项式,即常数,与条件不符,所以也是特征方程的另外一个实根,这样由韦达定理可得,同时是原来方程的一个解,代入可得应该选(A)若级数条件收敛,则依次为级数的()收敛点,收敛点 ()收敛点,发散点()发散点,收敛点 ()发散点,发散点【详解】注意条件级数条件收敛等价于幂级数在处条件收敛,也就是这个幂级数的收敛为,即,所以的收敛半径,绝对收敛域为,显然依次为收敛点、发散点,应该选(B)设D是第一象限中由曲线与

3、直线所围成的平面区域,函数在D上连续,则( ) ()()()()【详解】积分区域如图所示,化成极坐标方程:也就是D:所以,所以应该选(B)5设矩阵,若集合,则线性方程组有无穷多解的充分必要条件是(A) (B)(C) (D)【详解】对线性方程组的增广矩阵进行初等行变换:方程组无穷解的充分必要条件是,也就是同时成立,当然应该选(D)6设二次型在正交变换下的标准形为,其中,若,则在下的标准形为(A) (B)(C) (D) 【详解】,所以故选择(A)7若为任意两个随机事件,则( )(A) (B) (C) (D)【详解】所以故选择(C)8设随机变量不相关,且,则( )(A) (B) (C) (D)【详解

4、】故应该选择(D)二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9 【详解】10 【详解】只要注意为奇函数,在对称区间上积分为零,所以11若函数是由方程确定,则 【详解】设,则且当时,所以也就得到12设是由平面和三个坐标面围成的空间区域,则 【详解】注意在积分区域内,三个变量具有轮换对称性,也就是13阶行列式 【详解】按照第一行展开,得,有由于,得14设二维随机变量服从正态分布,则 【详解】由于相关系数等于零,所以X,Y都服从正态分布,且相互独立则三、解答题15(本题满分10分)设函数,在时为等价无穷小,求常数的取值【详解】当时,把函数展开到三阶的马克劳林公式,得由

5、于当时,是等价无穷小,则有,解得,16(本题满分10分)设函数在定义域上的导数大于零,若对任意的,曲线在点处的切线与直线及轴所围成区域的面积恒为4,且,求的表达式【详解】在点处的切线方程为令,得曲线在点处的切线与直线及轴所围成区域的面积为整理,得,解方程,得,由于,得所求曲线方程为17(本题满分10分)设函数,曲线,求在曲线上的最大方向导数【详解】显然在处的梯度在处的最大方向导数的方向就是梯度方向,最大值为梯度的模所以此题转化为求函数在条件下的条件极值用拉格朗日乘子法求解如下:令解方程组,得几个可能的极值点,进行比较,可得,在点或处,方向导数取到最大,为18(本题满分10分)(1)设函数都可导

6、,利用导数定义证明;(2)设函数都可导,写出的求导公式【详解】(1)证明:设由导数的定义和可导与连续的关系(2)19(本题满分10分)已知曲线L的方程为,起点为,终点为,计算曲线积分【详解】曲线L的参数方程为起点对应,终点为对应20(本题满分11分)设向量组为向量空间的一组基,(1)证明:向量组为向量空间的一组基;(2)当为何值时,存在非零向量,使得在基和基下的坐标相同,并求出所有的非零向量【详解】(1),因为,且显然线性无关,所以是线性无关的,当然是向量空间的一组基(2)设非零向量在两组基下的坐标都是,则由条件可整理得:,所以条件转化为线性方程组存在非零解从而系数行列式应该等于零,也就是由于

7、显然线性无关,所以,也就是此时方程组化为,由于线性无关,所以,通解为,其中为任意常数所以满足条件的其中为任意不为零的常数21(本题满分11分)设矩阵相似于矩阵(1)求的值;(2)求可逆矩阵,使为对角矩阵【详解】(1)因为两个矩阵相似,所以有,也就是(2)由,得A,B的特征值都为解方程组,得矩阵A的属于特征值的线性无关的特征向量为;解方程组得矩阵A的属于特征值的线性无关的特征向量为令,则22(本题满分11分)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记为次数求的分布函数;(1) 求的概率分布;(2) 求数学期望【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为显然Y的可能取值为且(2)设23(本题满分11分)设总体的概率密度为其中为未知参数,是来自总体的简单样本(1)求参数的矩估计量;(2)求参数的最大似然估计量【详解】(1)总体的数学期望为令,解得参数的矩估计量:(2)似然函数为显然是关于的单调递增函数,为了使似然函数达到最大,只要使尽可能大就可以,所以参数的最大似然估计量为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服