ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:861.50KB ,
资源ID:1975533      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1975533.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(浅析函数极限的求法-毕业论文.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

浅析函数极限的求法-毕业论文.doc

1、浅析函数极限的求法摘要极限是数学分析的一个重要组成部分,它以各种形式出现且贯穿在全部内容之中, 因此,掌握好极限的求解方法是学习数学分析的关键,而函数极限的求法可谓是多种多样.首先本文先给出了函数极限的定义及其性质;其次归纳和总结了函数极限的若干求法,并举例分析;最后给出了求函数极限的流程图,也就是求函数极限的思路、步骤,使初学者能较快地掌握求函数极限方法.关键词:极限;导数;洛必达法则;泰勒公式RAMBLE ABOUT THE METHODS OF MATH LIMITABSTRACTMathematical analysis of the limit has been a focus of

2、 content, and runs through the entire contents in a variety of forms, therefore, how to grasp the solution to limit is the key to learning the mathematical analysis. The series of limit can be described as diverse, by concluded and induction, At first, this paper gives the definition of limit, by de

3、fining the to understand what is the limit of sequence and function; secondly by induction and summarization, this paper lists some common calculation methods, and analysis all kinds of method of limit. At last,given the procedure of the solution to function limit finally, i.e. the idea of solve fun

4、ction limit and the step of solve function limit, to make the beginning student can grasp the method of solve function limit fast. Key words: limit; derivative; Variable substitution; Lhospitals rule; McLaughLin formula; Taylar exhibition type目 录1 前言- 3 -2函数极限的概念及性质- 4 -2.1函数极限的概念- 4 -2.2函数极限的性质- 5

5、-3函数极限的求解方法- 6 -3.1 利用两个准则求极限- 6 -3.2 利用极限的四则运算求极限- 7 -3.3 利用两个重要极限公式求极限- 8 -3.4 利用洛必达法则求极限- 9 -3.5 利用函数连续性求极限- 10 -3.6 通过等式变形化为已知极限- 10 -3.7 利用换元法求极限- 11 -3.23 利用自然对数法求极限- 11 -3.8 利用因式分解法求极限- 12 -3.14 利用压缩定理- 16 -4 求极限的一般流程- 18 -结论- 21 -参考文献- 22 -致谢- 23 -1 前言极限研究的是变量在变化过程中的趋势问题.数学分析中所讨论的极限大体上分为两类:一

6、类是数列的极限,一类是函数的极限.两类极限的本质上是相同的,在形式上数列界限是函数极限的特例.因此,本文只就函数极限进行讨论.函数极限运算是高等数学的一个重要的基本运算,一部分函数的极限可以通过直接或间接的运用“极限四则运算法则”来求解,而另一部分函数极限需要通过特殊方法解决.求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的.对某个具体的求极限的问题,我们应该追求最简便的方法.在求极限的过程中,必然以相关的概念、定理以及公式为依据,并借助一些重要的方法和技巧.极限是数学分析中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态.早在中国古代,极限的朴素思想和应用就已在文献中有

7、记载,例如,魏晋时期中国数学家刘徽的“割圆术”的数学思想,即用无限逼近的方式来研究数量的变化趋势的思想.在数学分析中的许多基本概念,都可以用极限来描述.如函数连续的定义,导数的定义,定积分、二重积分、三重积分的定义,级数收敛的定义,都是用极限来定义的.极限是研究数学分析的基本工具,极限是贯穿数学分析的一条主线.本文是在极限存在的条件下,对极限的常用求法进行综述,归纳出计算极限的一般流程.计算极限所用的方法,是致力于把所求极限简化为已知极限.求极限的方法远远不止本文所归纳的,故本文并不够完善,求极限的方法未能拓展,只限于数学分析.希望通过本文,大家在思想上能对求解极限的方法有一个高度的总括,计算

8、极限时游刃有余.2函数极限的概念及性质2.1函数极限的概念定义1 设为定义在上的函数,A为定数.若对任给的,存在正数,使得当时有 则称函数当趋于时以A为极限,记作 或 定义2 (函数极限的定义) 设函数在点的某个空心邻域内有定义,A为定数.若对任给的,存在正数,使得时有 则称函数当趋于时以A为极限,记作 或 定义3设函数在(或)内有定义,A为定数.若对任给的,存在正数,使得当(或)时有 则称数A为函数当趋于(或)时的右(左)极限,记作 ()或 () 右极限与左极限统称为单侧极限. 在点的右极限与左极限又分别记为 与 . 2.2函数极限的性质定理1(唯一性) 若极限存在,则在的某空心邻域内有界.

9、定理2(局部保号性)若 (或),则对任何正数(或),存在,使得对一切有(或).定理3(保不等式性) 设 与 都存在,且在某邻域 内有,则定理4 (迫敛性) 设,且在某邻域内有,则定理5(四则运算法则) 若极限与都存在,则函数,当时极限也存在.3函数极限的求解方法3.1 利用两个准则求极限(1)极限的迫敛性(夹逼原理),对数列和函数同样适用: 设,且在某内有则利用夹逼原理求极限,通常通过放大或缩小的方法找出两个有相同极限值的数列或函数, .例3.1求解: 因为,所以当0时 而 由迫敛性定理得,=1例 3. 2 求 解: 因为当2时,而, 由迫敛性定理知=0(2)单调有界定理设为定义在或上的单调有

10、界函数,则存在或存在3.2 利用极限的四则运算求极限极限的四则运算法则:若, (1) (2) (3)若 则: (4) (c为常数) 上述性质对于时也同样成立通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算,首先对函数实行各种恒等变形.例 3.3 求极限解:= =例3.4 求极限解:=0例3.5 求极限 解:=例 3.6求极限解: = = 3.3 利用两个重要极限公式求极限两个重要极限公式:(A) (B)但我们经常使用的是它们的变形: 例3.7 求极限解: =例3.8 求极限解: =3.4 利用洛必达法则求极限型不定式极限定理:若函数和满足:(1);(2)在点的某空心邻域内两者都

11、可导,且;(3)(可为实数,也可为或),则型不定式极限定理:若函数和满足:(1);(2)在点的某右空心邻域内两者都可导,且;(3)(可为实数,也可为或),则 不定式极限还有等类型,经过简单变换,它们一般均可化为型或型的极限.例3.9 求极限 解: 由对数恒等式可得 =例3.10 求极限解:= =-43.5 利用函数连续性求极限(1)若在处连续,则(2)若是复合函数,又且在处连续,则这种方法适用于求复合函数的极限.如果在点连续,而在点连续,那么复合函数在点连续.即.例3.10 求极限解: 令,因为在点处连续所以=3.6 通过等式变形化为已知极限要点:当极限不宜直接求出时,可考虑将求极限的变量作适

12、当的等式变形,得到已知极限的新变量.例3.11 求极限解: =03.7 利用换元法求极限当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求.例3.12 求极限解: 令,则=3.8 利用自然对数法求极限自然对数法:把形如通过恒等变形写成的形式,改为求 或不定式的极限.例3.13 求极限解: 用自然对数法,令y=取自然对数得= 3.9 利用因式分解法求极限要点:如果可以通过因式分解将变量化简或转化为已知的极限,即可利用此方法求变量极限.例3.14 就极限解 : = 3.10 利用等价无穷小量求极限当时,下列函数都是无穷小(极限为0)且相互等价, 设函数在内有定义,且有

13、 .(1) 若,则(2) 若,则 注:在用等价无穷小求极限过程,不是乘除的情况,不一定能这样做.例3.15 求极限解: =例3.16 试确定的值,使时为同阶无穷小量解: 因为= = 所以,故当=1时与当时为同阶无穷小量3.11 利用积分中值定理求极限一般根据积分第一中值定理:若在上连续,则至少存在一点,使得 将某些含有积分的变量化为一般形式再求极限. 例3.17 求极限解: 由积分中值定理=, , 3.12利用定积分求和式的极限利用定积分和式求极限时首先选好恰当的可积函数,把所求极限的和式表示成在某区间上的等分的积分和式的极限.例3.18 求极限解: = 令=,则由定积分定义知 又 由,得=

14、3.13 利用级数收敛的必要条件求极限利用级数收敛的必要条件:若级数收敛,则,运用这个方法首先判定级数收敛,然后得出它的通项极限. 例3.19 求极限解: 设则 = =01由比值判别法知收敛由必要条件知=03.14 利用泰勒公式求极限泰勒公式是一大难点,在学习时首先要清楚泰勒定理成立的条件,清楚泰勒公式、麦克劳林公式的表达形式以及常见的麦克劳林展开式.实际上,泰勒公式在证明、极限计算等方面有着广泛而独到的应用. 泰勒定理:若在点有直到阶连续导数,那么 (其中在0与1之间)例3.20 求极限解: 泰勒展开式 于是所以=3.15 利用压缩定理定理3.15(压缩定理):1 对于任意数列而言,若存在常

15、数,使得,恒有 ,则数列收敛2 特别,若数列利用递推公式给出: ,其中为某一可微函数,且,使得 ,则收敛。证明 1 应用柯西准则,知收敛。或利用狄利克雷判别法,可知级数绝对收敛,从而序列 收敛2 若成立,利用微分中值定理: ,即此时,也成立,故由1可知收敛注 此定理可以与单调有界定理和起来证明递推数列的收敛。如例3.2也可以这么来证明。例3.2 证明下列数列的极限存在,并求极限解:对于1已有,对,有,则它满足压缩定理的条件,故收敛。例3.15 设,由下列递推公式定义,求解:因为又因为,所以收敛。因为,设,对两边取极限得所以,不合题意(由极限的保号性可知)所以4 求极限的一般流程一般流程图如下所

16、示:NYN通分YNYYNYNNNYNYYNYNY输入连续输出有零因式去零因式洛必达法则有无穷大因式去无穷大因式利用其他方法求极限图1 求函数极限流程图求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的.对某个具体的求极限的问题,我们应该追求最简便的方法.在求极限的过程中,必然以相关的概念、定理及公式为依据,并借助一些重要的方法和技巧.对求函数极限流程图的说明1. 判断函数是否连续,若连续直接用极限的四则运算解之,如例3.3;3.4;3.5;3.6.2. 判断函数的形式是不是2.1 如果是,接着判断是不是 或 如果是,接着判断是否有零因式(或无穷大因式) 如果有,则去零因式(或无穷大因

17、式),再回到第一步进行是否连续的判断;若有零因子,可用因式分解或泰勒展开式去零因子;若有无穷因子,可通过衡等变化去无穷因子. 如果没有,则应用洛必达法则,再回到第一步进行是否连续的判断; 如果不是,则是形如 的极限,显然可直接得出答案;2.2 如果不是,接着判断是不是 如果是,接着判断是不是 如果是,则转到 2.1; 如果不是,则是形如 的极限,显然可直接得出答案; 如果不是,接着判断是不是的形式 如果是,应用自然对数法求极限,则可转到2.2; 如果不是,则判断是不是 的形式(如果是,通分可后转到 2.;如果不是,则归结为其他类型的极限,用两边夹定理积分中值定理、级数收敛的必要条件等其他方法来

18、求解,可转到1.如例4.2,4.3,4.4.)不同的函数形式,可采用不同的极限求法,如上文归纳的求极限的方法.不管用什么方法,目的都是要简化函数,化为已知极限.结论在选择求极限方法时,首先要分析函数的特点,确定函数式的类型,然后根据函数的类型和特点来决定用何种方法去求函数的极限.极限是描述数列和函数的变化趋势,该趋势是以自变量的变化过程为前提,所以在判断极限所属的类型时,一定要以自变量的变化过程为前提,而不能单纯只看函数式,否则必错无疑.把求数列极限化为求函数极限,就给求数列极限开辟了广阔的天地.这是因为求函数极限可以有多种方法,针对不同函数的特点,可利用函数的连续性、洛必达(L.Hospit

19、al)法则,函数的泰勒(Taylor)展开式等,但也应该明白,并不是任何数列极限问题都能转化为函数极限问题的,例如,当数列的通项本身呈现n项之和或积的形式时就不能按海涅定理转化为函数的极限了.本文主要归纳了数学分析中求极限的一些常用方法.以上只是众多求解极限方法的一小部分,或许并不全面,读者如果有兴趣可以继续探索新的求解方法.因为数学知识博大精深,我们目前只接触到一点点而已,虽然我们还处在那数学的基础层,但这并不妨碍我们对数学的喜爱与学习,我们应不停的接受知识. 总之,在求函数极限的过程就是综合运用各种方法的过程,只有真正理解每一种求解函数极限方法需要满足的条件及实质,以及各种方法之间的内在联

20、系,才能在求函数极限的过程中游刃有余,且受其益于生活实践.参考文献1王盛群等.高等数学M.山东:山东大学出版社,1993.2华东师范大学数学系.数学分析M.北京:高等教育出版社,2001.3钱吉林.数学分析题解精粹M.湖北:众邦考试教育研究所,2009. 4同济大学数学系.微积分M.北京:高等教育出版社,2009.5尹国成.常见函数极限的求法J.保山师专学报,2009,(6):1-3.6宋颢.函数极限的求法探讨J.现代商贸工业,2010,(12):360-361.7刘玉琏等.数学分析讲义M.北京:高等教育出版社,1992.8同济大学应用数学系.高等数学习题集M.北京:高等教育出版社,1998.

21、9 Wolfgang B. Jurkat.Ein funktionentheoretischer Beweis furo-Taubersitze bei den Verfahren von Borel und Euler-Knopp.J.Archiv der Mathematik,1956,7(4)10 Balazs Szegedy.Characters of the Borel and Sylow subgroups of classical groups.J.Journal of Algebra,2003,267(1)致谢这次毕业论文能够得以顺利完成,自始至终都是由杨玉敏老师全面、具体的指

22、导之下进行的,多次帮我修改论文,还给予我很多宝贵的意见和建议.杨玉敏老师严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作. 在杨老师那里,我不仅学习到了广泛的专业知识,更重要的是她那渊博的知识,无私的奉献精神,孜孜不倦的教诲给了我深深的启迪.在我做本文的过程中无不倾注着杨玉敏老师的心血和汗水.在此,我要向我的毕业论文指导教师杨玉敏老师致以衷心的感谢和深深的敬意!衷心感谢每一位教导过我的老师,是他们使我拥有良好的专业基础,因而有能力完成这一毕业论文.感谢身边所有的朋友与同学,谢谢你们四年来的关照与宽容,与你们一起走过的缤纷时代,将会是我一生最珍贵的回忆.1.

23、基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片机的作物营

24、养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高

25、速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单

26、片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡

27、文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机

28、的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲

29、幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的C/OS-的研究82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机-免疫计数器自动换样功

30、能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的

31、研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADC841单片机的防爆软起动综合控制器的研究105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁

32、棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!- - 24 - -第 - 24 - 页 共 20 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服