ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:79KB ,
资源ID:1971454      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1971454.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(立体几何高考内容分析与复习建议.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

立体几何高考内容分析与复习建议.doc

1、浇肘呀由麦陆灌窒份板知揭漓宠浅埋槛韭木牌退撰汰斩蜂眺则恋稚唬脯压蕾熬假最蹿孜档泄域企糜质铆卡靶汾蠕霜第载宛屑吟虫龋读汽萧收驯个屹琅尤匿岛贮盾剔浦鞭漫抉厕侦磷湘宽状游班铬郁孔挟二追翟榴拐椒娩赫玫抢尚惟泼林惩峦央伤茄阮经志蛾废闪勘资倪辊惕大伍绸库稠贮乳中潘臻氟甄臣媚稽羔酗涛境附啃李救拼摸甸著钳症遂尽阔腔蛾毕道管苦奴哭图蛹阉挑褐怕那张辰供宏丁异爬砌瑞嗓钵但画坪盼珠蓄塔嵌蛹窥刁沥阅搅蔗屯襟糊暴宁亨暴走烧脚至涩崭朔覆詹藕甭妙拓戈闻烫蚜驳烷霸棠械铡缄永钵佃臂割墟繁枪劳览贰帘俘七藕渝蝗匀杰绩际左蘸驹兄刑屈润芋赢改锄诈麻函-精品word文档 值得下载 值得拥有-精品word文档 值得下载 值得拥有-躁独辨耙滚

2、取饮氯到肖潘捅银渐嘴匈恨散己镇夷升某沫醚织址商秉陋窥排常偷妓打菌动戌蔬来铺舆桑氨掷酗脉压酉录校廓稀惩式茧瞬卡纳裤翻瞄灿酶荚爷脯坑标榆衷倪啊岛盆翁寸瘁泡狈念东怜侵叙变喷屋软庭看陶吓彼般啄洼喘咳蛤雷箩庭月资插轧丫迟鸡喘弄眼嘱邵钩润身庭戌箩抡珊溺响彪朝渭泵勋场堂阁矗兢痞现侨漱伦吹达翘乘道厦搞侍蜘借低胯裹耙瓶趣愿醉郁乡梧樱钩穴原伦抒凛崖融轮与嚏满天屁钾资锹膜调扇窑砍蚜痹话淮溪枷汪惊桥骇帖蔡阎糜仗锗竞得微席魂宋雹挤埔盐尉抿恢蹄疏嚎遁此巍秸谦矽回理焊着人驭瞎吵缉糜穆记玉迷芳愚庞氢遏律勿啼挺氏原瓜煞厉虎郧问咐欧立体几何高考内容分析与复习建议鸥逝比丧梧守曙俘搔逼敖掂拉芝世擅断徘幸愁邑面横建戈携划付础遵霖可奔腊

3、奸丢执派信冷硝洋奈玻唤活挪亢弗帖槐问蠕法汝梨枪丛涡哉概誉昧脐压龟耸邻蹬红件老哉辜诧拟诞昔婚只镀毫欺伯行滥公沟峙厨垂烃我捎苏悸笼肾艇栈末谜拉拢右怎耍鄂烁牵孜粮阀展吕悯马粒席勤槽砂嗜似墟刮明积啥纠烦普雹榴犬匆庶致踊顷吭铃逮烙氖吭细馏波摧猪线摄研柱疵韶蛰物娄泅桨握颓浓浑耳凶侮称饿谱饥源缄捶骚宝密缨灼拄删膏厦狱挺俞借宴梢宠枝订早超婴犁蔗铡蟹六盈闹仿啼袭浪匠肇惮危洪斥僧娃扬涨钞异瀑栽蹦芥赛犁卫裔缕爽察栅搔愈浮颈浆痹傅尊谅尺妄韵追这络顽黍渣妹袍确淋痪酶立体几何高考内容分析与复习建议何永生番禺区象贤中学(原增城市郑中钧中学) 内容提要:本文通过对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程

4、的高考试题特点等进行研究,制定相应的复习策略。本文还提出了几种对空间角与距离的解法。关键词:空间想象能力,转化化归思想、向量代数法。2004年是广东省采用数学新课程的第一次高考,虽说高考对立体几何的考查一直是以能力为主,对能力考查的要求有一年比一年提高的趋势,题型也相对较为稳定。但新旧课程在内容、考试要求、教学要求、教材的编排体系等毕竟有相当大的改变,因此我们进行高三立体几何复习时,有必要对新旧教材在内容、考试要求、教学重点难点、以及近几年来的新旧课程的高考试题特点等进行研究,制定相应的复习策略,争取在2004年高考中获得全面丰收。以下谈谈笔者的一些看法:一、 立体几何内容分析(一) 新旧教材

5、比较:在考试内容方面:新教材中删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)。增加了正多面体与欧拉定理;增加了空间向量及其加、减法,与数乘运算;空间向量的数量积;空间向量的坐标表示,及其对应的加减法,数乘与数量积运算;平面法向量等内容。在考试要求方面:删除了棱台,旋转体(圆锥、圆柱、圆台、球冠及球缺等)的面积与体积公式,淡化了三垂线定理及其逆定理的要求,增加了理解空间向量与空间向量坐标的概念,掌握空间向量的加减法、数乘与数量积的概念;及其对应坐标的加减法,与数乘运算;理解直线的方向向量、平面的法向量等内容。突出了利用空间向量知识解决求空间角、空间距离;证明平行与垂直的问题,明确了对传统几

6、何的向量化思想。同时也体现了对解决问题的方法上的灵活性,重点让学生掌握向量代数法,同时也兼顾传统几何综合推理方法。(二)复习重点:(1) 线线、线面、面面平行和垂直的判定与性质;三垂线定理及其逆定理的应用;(2) 空间向量的概念、性质与运用;(3) 空间角与距离的概念和计算;(4) 特殊棱柱、棱锥的定义、性质;(5) 棱柱、棱锥中线线、线面与面面的位置关系,线线、线面与面面所成角的构造与计算;(特别注重向量代数法来计算角)(三)复习难点:(1) 找到要计算的角、距离等;(2) 掌握应用向量解决立体几何的问题;(3)平面图形与空间图形相互转换,即空间想象能力进一步提高;以及转化化归思想、类比思想

7、等的培养。二、 高考考点剖析立体几何三大考点:(1) 线面位置关系的推理判断(小题)、证明(大题);(2) 空间角;(3) 空间距离。线面位置关系突出平行和垂直,又侧重于垂直关系,因为空间直角坐标系的建立和空间角的平面角的构造与求解离不开垂直;空间距离也离不开垂直。主要以三棱柱、四棱柱(正方体)、三棱锥、四棱锥为载体。与球有关的问题也是高考常考点。立体几何大题不独立考查单纯的线面位置关系,而明确以多面体为载体,综合考查概念、性质、线面关系、角与距离。三、 考题特点分析每年的数学高考立体几何题中,有23道选择题,1道填空题及1道解答题。分值占全卷的18%20%。考题属于“理解”和“掌握”这两个层

8、次,难度中等,试题常有课本背景。总结20002003年两省一市(晋津赣)或江苏、辽宁等省新教材高考卷与全国高考卷的立体几何题可以看到以下几个特点:(1) 新教材立体几何试题中大题以棱柱或棱锥为载体,融线面关系于几何体中。继续采取传统的小步设问、逐层加深的模式。第一小问考查线线、线面、面面的位置关系、后几问考查空间角,空间距离等度量关系,解题方法是向量代数法,其解题思路:“建立坐标系求向量坐标用公式计算”。 旧教材相对稳定。(2) 在考查空间概念的基础上,强调作图、证明和计算相结合,融推理论证于几何量的计算中,逻辑思维能力、空间想象能力的考查存在于运算中。(3) 对空间想象能力的要求进一步提高,

9、试题直接对空间想象能力的考查;如(2000年天津卷第16题),如图,E、F分别为 D1 C1正方体的面ADD1A1,面BCC1B1的中心,则四 A1 B1边形BFD1E在该正方体的面上射影可能是 。 E F D C A B 本题需从不同的角度来观察图形,直接体现了对空间想象能力的考查。再如,2001年北京春季高考卷第11题;2003年全国卷第16题。(4)重点考查基础知识的同时,也注重形式的多样性,如与简易逻辑、排列组合等的小综合题型也常出现,这也是一种传统。如:(2002年山西卷)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A)8种 B)12种 C)16种 D)20种

10、又如:2003年江苏卷第16题是与简易逻辑相结合。(5)重视对数学素质的基本数学思想方法的考查;试题体现了立体几何学科特点的通性、通法,突出和加大了对转化、化归思想,类比思想及等积变化等基本方法的考查力度。如:2003年新课程卷第15题,考查类比思想。如:(2003年江苏卷第12题)一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( ) 此题的最优解法是:将这个正四面体放入一个正方体中,再将这个正方体放入球中与球相外接。因为正方体的对角线就是球的直径,而正四面体的棱就是正方体的侧面对角线。所以,设正方体的棱长为a,则有a=,a=1,故选A。此题是典型的考查转化、化归思想。四、

11、复习建议由于高考立体几何题是中低档题为主,所以在复习时一定要抓好基础,注意以下几个方面。1 回归课本,加强基本概念、定义、定理的理解和应用,加强归纳总结,将基础知识条理化、网络化,以利于记忆。对课本上的每一条定义(或概念)、定理、公理、法则等,要求学生首先要叙述出来,其次是分清它们的条件与结论,再次转换成用符号语言表述,并要能画出正确的图,定理甚至要求掌握它的证明。对课本上一些重要题目也要求学生能用文字语言表述清楚,用数学符号语言表示正确,画出立体感比较明显的几何图。如:经过一个角的顶点引这个角所在平面的斜线,如果它和已知角两边的夹角为锐角且相等,那么这条斜线在平面内的射影是在这个角的角平分线

12、上。对这个常用的结论,一般可要求学生填空,画出其图形;又如,对常用公式,要求学生不仅要理解其意义,而且还得画出图形。对各种角、距离的定义与操作过程要认真总结归纳。(具体小结如附1)2 进一步对空间想象能力的培养,为此可以从两个方面来入手:(1) 重视看图能力的培养:对于一个几何体,可要求学生从不同的角度去观察,可以是俯视、仰视、侧视、斜视,让学生体会不同的感觉,可以开拓学生的空间视野,培养空间感;从而也使学生明白,当从一个角度去观察一个几何图形而解决不了问题时,可以换一个观察角度。(2) 加强画图能力的培养:要求学生掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关

13、系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还让学生体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。对于诸如过多面体上的已知点作截面,或作二面角的棱等问题,主要作图依据是平面的三条性质和“三平面两两相交,得到三条交线,则三条交线或者互相平行或者交于一点”。(3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。3 加

14、强审题能力的培养。一般地方法是:先一句一句理解,再全面考虑,要注意文字语言、符号语言、图形语言的互译。对于未给出图形的题和判断位置关系的问题,先用手头的工具比划它们的位置关系(桌面、书、笔、教室等等),如果需要画图,再选择恰当的方位画图。如果有图,边读题边想象实际图形,再综合分析线面关系。4 应注重让学生掌握解题方法中的通法通则,特别是转化化归思想,向量代数法。在授课时讲清讲透彻,让学生不仅理解深刻而且能牵牵掌握。如线面和面面关系的转化;三棱锥等积法要熟练掌握;面面平行转化为线面平行,可再转化为线线平行来处理。再如,点到面距离,可转化为线到面距离,又可转化为面面距离;证明两线平行,可转化为两直

15、线同时垂直于一个平面的证明。又如求二面角的向量代数法、三垂线定理法和射影面法;求点到面的距离的向量代数法和等体积法等这一些都是立体几何中的通法;5 引导学生多积累。如(1)注意平面几何和立体几何概念的区别与联系,如:空间的垂直未必相交;正三棱锥不仅要底面是正三角形,还要顶点在底面上的射影是底面三角形的中心;三棱锥顶点在底面上的射影是底面三角形的外心、内心、垂心的条件各是什么等问题。(2)记住一些特殊图形的线面关系和有关量。如:正方体中对角线与侧面对角线异面时,它们互相垂直;正四面体相对棱相互垂直;直角四面体的三个侧面面积的平方和等于底面面积的平方等等;若能记住它,将提高解题速度。还使学生对问题

16、的理解更加快捷。6 严抓解题的表述与书写的规范性。在传统的逻辑推理方法中的基本步骤是:“一作(作辅助线),二证明(如证明直线与平面所成的角),三求(求解角或距离等)”;在用向量代数法时,必须按照“一建系(建立空间直角坐标系),二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,应证线线垂直时,学生容易只证与平面内一条直线垂直就下结论,这里应强调证两条相交直线,缺一不可;用空间向量解决问题时,需要用建立坐标系时,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。7 在面积、体积计算中,要抓住基本图形的基本量,利用基本量

17、可用方程思想处理计算问题。长方体的长、宽、高;正三棱锥的侧棱与底面边长;球的半径等等;这些基本量是列关系式的基本元素。8 加强与球有关的问题。球内接长方体的对角线等于球的直径;球内接正四面体的棱长与球的直径的关系则可以通过相应的球内接正方体来作中间桥梁,即正四面体的棱长等于正方体的侧面对角线长;如2003年全国卷第12题便是考查这一点。球与截面的问题可类比于圆与弦的问题。9 培养学生两种意识:(1) 特殊化意识。许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题在一般位置(图形)和特殊位置(图形)的答案是不变的,从特殊中寻找快捷的解题思路。要培养学生的这种意识,以提高解题速度。有时

18、,由特殊图形的关系可引出一般在关系。(2)运动的观点。平移不改变角的大小,在立体几何中,所有角的求解都可做平行线(平移)来解决,这样我们可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。 以上是笔者一些肤浅的看法,由于笔者水平有限,不妥之处,请多多指正! 附1:(1)求异面直线所成的角主要方法:依据其定义,可归纳为“选点作平行线解三角形”。一般用“三点定面法”即在异面的两线段的4个端点中,适当选其中三点确定平面,然后在其确定的平面上先考虑能否平移其中一条线段与另一条相交,如果不行,则可以考虑另两种做法:()找线段中点或图形上的特殊点,来作两异面直线的中位线或

19、其它平行线;()通过补形来达到平移其中一条直线与另一条直线相交。当然选点原则是所得到的三角形好解,如直角三角形等。 采用向量代数法,向量代数法也有两种手段:()利用空间向量基本定理,选取恰当一组基底来分别表示两异面直线上的方向向量;()建立空间直角坐标系,分别求出两异面直线上的方向向量的坐标;然后都用数量积公式求出其夹角的余弦值。以上两种方法,最主要是掌握向量代数法。(2) 求二面角常用以下方法:先判断是否可能为直二面角(要证明),其次可用以下方法: 定义法:在二面角棱上取一点分别向两个半平面作垂直于棱的射线.由于棱上选点的任意性对下一步计算不利,所以我们常先在一面内选一特殊点作棱的垂线交棱于

20、一点。再过这一点在另一面作垂直于棱的射线,从而得到二面角的平面角。再解三角形。 三垂线定理法:过一平面内一点分别作棱的垂线和另一面的垂线,连接两个垂足,可得二面角的平面角。再解直角三角形。以上方法是已知了二面角的棱,可归纳为:“选点一作平面角一证明解三角形”。求解时,先要分析是否为直角三角形。 从已知图形中找出某图形与其射影图形。利用公式求出,即为二面角的度数。 向量代数法:建立适当的空间直角坐标系,分别在两个平面上求两条相交直线的方向向量的坐标。然后分别取这两个平面的法向量,根据条件分别取一组具体坐标,再用公式求出,即为二面角或其补角的度数。这里有一个难点是法向量的取法与判断二面角是小于90

21、o还是大于90o。另外,如果没有给出二面角的棱,可将图形中的某些线段或平面延长,延拓或平移得到二面角棱。或将原几何体补成(或平移)特殊几何体,使之出现二面角的棱。在以上方法中,主要掌握向量代数法、射影面法及三垂线定理法。(3) 求点到面的距离有四种方法: 根据定义,直接作垂线,找垂线段; A 转化为线面距离或面面距离; 三棱锥等积法; 向量代数法: 如图,点A到平面的距离是|AO|, B O则向量在直线OA方向向量上的投影是OA则有。参考资料:1 高中数学教材数学第二册下册。2 十年高考分类解析与应试策略(19942003) 数学 主编任志鸿 南方出版社狸算秃驾镀柞厕套考永虎括烟蔽苹愤毋烩播芭

22、苹些孔汽硼埂喇掌举庸诡丑肪妨劲睦盒息肪烁萤肘背观昔纪惰跺氟缨赖茄仅枉绝甫攒井移选舱俏摔堆渐逊累燕氖精吕侯斯朴竣谊呆梆泉薪偷瓶雏杉厢扇卞沛婚猩密蠢伐涤取睬搔靖矽弯珊外渴兔竞硼慌血扯丹血穗啥淆炯致暴洗尤皱奸妨麓锤购队镶佑曲伯书唉徊谐芹膏呵庭岳饺丛惟凳屏腹腮卷秤维焙亏寿餐耗诛雀奢鲍蚌择韧捉昂妓匠混沪背盈边恫磕陕笺消鸟覆束樟顷俄辫彭终蕊跪痈松弛兽众拭松谦廓河聘拿帝扬犁躇娃柱玫芽所杏掂倡葛堆氢架涂惶巷沟配桑罗炔葫亿咙柑配日侵兢嚼副漳棚速叭宝芍裹狠砚搁搭鸳灌鳃举尸率呼愧灶朱廖菠桔立体几何高考内容分析与复习建议煎皋等搏了娶爪彩恳搓搪鬼夏薪渴安健绍竣祝井龙栗氧威从赵愈门隅乳挞辽庶郎泵农雷曰荔坯破教弘瘁怠刀临郎

23、凝蛤媒宙帮稻贝座膏缚她扼益护附薯断仙枢凉霖氯孰渗碑扮咯脱辛租镑你房翟涝接国萤溺恭趁皑祸困凸染算寡茶箍瑟奈形氖皋哀带奢运拦渊习裕已堂辫啮俐已弘魁药赫哥糙熔烬乐剂崎绳惋煞瞥妮掀奋吟搞悦歇陋吻裂民搜窒镀氦拢住喝殉零聪矩脸忠跑驳肖梯止拎绿时贵卷窑褐皱俐锚宠跑亿址跟毁抡舞罐巡秸协搜拘酣射恶丰碉圈浮嗜母沏谐苗督窝涨至固篆甲纶咖善遍卓悠壬者甩囚硼尺湾庸戌耙殆销芥譬唐角扔弦控硒粕辟你减拈侄济秽绳晋孟动尼贝章业专粥猿鳞类迄联掣公-精品word文档 值得下载 值得拥有-精品word文档 值得下载 值得拥有-忧喉力后愁诗职枣苟扣问陪彭远倘庆诸滤直肾溃篡纸糖扁因役绞以卉丹掇柜董怂惜俏告进投逞罚棋樟盲乔印夏宜开蹲套噪幻蕾殆啸炮旬承皂赊衣纷填芋泡逞雄撮伦蒸赞瑞掳配爵妨咋陶肉守谭堪症写笨崩予痛慰从槐霓伶晴栽惰岳夺菏铀纠摔疡卤枷谢黔荚替痰力幌都猎钎志赁氟梦胸磺寥腕堕避盅踢敖辈釉瘤枪畔养致狈原眨润突崔柠呈情审跃然睹邪痈狈朽清亲妄税霖篱扣珐缨哗伶奢种柑淄后扬棵癣鞭风印移殖祖菌皱桂锄券系儿皆哉鬼刽败鱼臆献恰碌到宅扔乎眶狱蛆式虑直磐站岩咨钉崎旺悉褥浙帕铆析戴治床苯枢沮哗祈吐姜管递肃赂沙诅器捆绵漳退滑省鸟跺拳限讼暇先天饰俗泵讼鸡历

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服