ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:588.04KB ,
资源ID:1926359      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1926359.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023年人教版七7年级下册数学期末综合复习附答案.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年人教版七7年级下册数学期末综合复习附答案.doc

1、2023年人教版七7年级下册数学期末综合复习附答案一、选择题1“49的平方根是”的表达式正确的是()ABCD2下列各组图形可以通过平移互相得到的是()ABCD3已知 A(1,2)为平面直角坐标系中一点,下列说法正确的是( )A点在第一象限B点的横坐标是C点到轴的距离是D以上都不对4下列命题:平面内,垂直于同一条直线的两直线平行;经过直线外一点,有且只有一条直线与这条直线平行;垂线段最短;同旁内角互补其中,正确命题的个数有( )A3个B2个C1个D0个5将一副三角板按如图放置,如果,则有是( )A15B30C45D606给出下列四个说法:一个数的平方等于1,那么这个数就是1;4是8的算术平方根;

2、平方根等于它本身的数只有0;8的立方根是2其中,正确的是()ABCD7如图,已知,平分,则的度数是( )ABCD8如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、的位置上,则点的坐标为( )ABCD九、填空题9算术平方根是的实数是_十、填空题10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11如图已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为_十二、填空题12如图,直线m与AOB的一边射线OB相交,3120,向上平移直线m得到直线n,与AOB的另一边射线OA相交,则21_十三、填空题13如图,在中,点D是的中点,点E在上,

3、将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是_十四、填空题14规定,例如:,通过观察,那么_十五、填空题15如图,直角坐标系中、两点的坐标分别为,则该坐标系内点的坐标为_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0),则P2020的坐标是_十七、解答题17计算下列各题:(1) (2).十八、解答题18求下列各式中的x值:(1)(2)十九、解答题19请补全推理依据:如图,已知:,求证:证明:(已知)( )( )又(已知)( )( )( )二十、解答

4、题20如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一个单位长度(1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与点C是对应点),得到三角形,在图中画出三角形;(2)直接写出三角形的面积为_二十一、解答题21如图,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图所示的大正方形,设图所示的大正方形的边长为a(1)求a的值;(2)若a的整数部分为m,小数部分为n,试求式子的值二十二、解答题22已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1.5,面积为7350平方米,

5、请判断该球场是否符合国际标准球场的长宽标准,并说明理由二十三、解答题23如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)二十四、解答题24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平

6、分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由二十五、解答题25解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数【参考答案】一、选择题1A解析:A【分析】根据平方根的表示

7、方法,即可得到答案【详解】解:“49的平方根是”表示为:故选A【点睛】本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键2C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键3C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可【详解】解:A、10,点在第二象限,原

8、说法错误,该选项不符合题意;B、点的横坐标是1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键4A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案【详解】平面内,垂直于同一条直线的两直线平行;故正确,经过直线外一点,有且只有一条直线与这条直线平行,故正确垂线段最短,故正确,两直线平行,同旁内角互补,故错误,正确命题有,共3个,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两

9、部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5C【分析】根据一副三角板的特征先得到E=60,C=45,1+2=90,再根据已知求出1=60,从而可证得ACDE,再根据平行线的性质即可求出4的度数【详解】解:根据题意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可【详解】解:(1)21

10、,一个数的平方等于1,那么这个数就是1,故错误;4216,4是16的算术平方根,故错误,平方根等于它本身的数只有0,故正确,8的立方根是2,故错误故选:D【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键7D【分析】由题意易得,则有,然后根据平行线的性质可求解【详解】解:,平分,;故选D【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键8D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐

11、标的规律变化解析:D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位九、填空题95【分析】根据算术平方根的定义解答即可【详解】解:算术平方根是的实数是5故答案为:5【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个解析:5【分析】根据算术平方根的定义解答即可【详解】解:算术平方根是的实数是5故答案为:5【点睛】本题主要考查算术平方根的

12、定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关

13、于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题11120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,解析:120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,故答案为:【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键十二、填空题1260【分析】延长BO交直线n于点C,由平行线的性质得ACB=1,由邻补角得AOC=60,再由三角形外角的性质可得结论【详解】解:延长BO交直线

14、n于点C,如图,直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得ACB=1,由邻补角得AOC=60,再由三角形外角的性质可得结论【详解】解:延长BO交直线n于点C,如图,直线m向上平移直线m得到直线n,mn,ACB=1,3120,AOC=602=ACO+AOC=1+60,2-1=60故答案为60【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键十三、填空题13【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详

15、解】如下图,连接DE,与解析:【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与相交于点O,将 BDE 沿 DE 折叠,,又D为BC的中点,,即与所夹锐角的度数是故答案为:【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键十四、填空题14【分析】由题干得到,将原式进行整理化简即可求解.【详解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.解析:【分析】由题干得到,将

16、原式进行整理化简即可求解.【详解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15【分析】首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可【详解】解:点C的坐标为(-1,3),故答案为:(-1,3)【点睛】此题主要考查了点的坐标,关键是正解析:【分析】首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可【详解】解:点C的坐标为(-1,3),故答案为:(-1,3)【点睛】此题主要考查了点的坐标,关键是正确建立坐标系十六、填空题16(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0)

17、,P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而得到P2020(673,-1)【详解】解:由图可得,P6(2,0),P12(4,0),P6n(2n,0),P6n+4(2n+1,-1),20166=336,P6336(2336,0),即P2016(672,0),P2020(673,-1)故答案为:(673,-1)【点睛】本题主要考查了点的坐标变化规律,

18、解决问题的关键是根据图形的变化规律得到P6n(2n,0)十七、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+十八、解答题18(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直

19、接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解得:x=8或x=-4【点睛】本题考查了立方根和平方根正数的立方根是正数,0的立方根是0,负数的立方根是负数即任意数都有立方根十九、解答题19同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:121

20、80(已知),ADEF(同旁内角互补,两直线平行),3D(两直线平行,同位角相等),又3A(已知),DA(等量代换),ABCD(内错角相等,两直线平行),BC(两直线平行,内错角相等)故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键二十、解答题20(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:

21、(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可【详解】解:(1)如图所示,即为所求;(2)由题意得:【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法二十一、解答题21(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可【详解】解:(1)由题意可得:,a0,;解析:(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而

22、得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可【详解】解:(1)由题意可得:,a0,;(2),m=2,n=,=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围二十二、解答题22符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb

23、=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提二十三、解答题23(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公

24、理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=1

25、10 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线

26、二十四、解答题24(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作E

27、SCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十五、解答题25(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服