1、2024年人教版中学七7年级下册数学期末试题附答案一、选择题1下列说法正确的是()A4的平方根是B16的平方根是C2是的算术平方根D是36的算术平方根2下列生活现象中,属于平移的是( )A钟摆的摆动B拉开抽屉C足球在草地上滚动D投影片的文字经投影转换到屏幕上3如图,小手盖住的点的坐标可能为( )ABCD4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5将一副三角板按如图放置,如果,则有是( )A15B30C45D606有下列说法:(1)-
2、6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )A1个B2个C3个D4个7如图,交于点,平分,则的度数为( )A60B55C50D458在平面直角坐标系中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(2,4),点A2021的坐标为( )A(-3,3)B(-2,2)C(3,-1)D(2,4)九、填空题94的算术平方根是_十、填空题10点关于轴的对称点的坐标为,则的值是_十一、填空题1
3、1如图,在中,是的角平分线,垂足为,则_ 十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处若PEF=75,2CFQ=PFC,则_十四、填空题14x)表示小于x的最大整数,如2.3)=2,4)=5,则下列判断:)=;x)x有最大值是0;x)x有最小值是1;xx)x,其中正确的是_ (填编号)十五、填空题15已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为_十六、填空题16如图,在平面直角坐标系上有点A(1,0),
4、第一次点A跳动至点A1(1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(2,2),第四次点A3跳动至点A4(3,2),依此规律跳动下去,则点A2021与点A2022之间的距离是_十七、解答题17(1)已知,求x的值;(2)计算:.十八、解答题18求下列各式中x的值(1)4x264;(2)3(x1)3+240十九、解答题19补全下列推理过程:如图,已知EF/AD,12,BAC70,求AGD解:EF/AD2 ( )又12( )13( )AB/ ( )BAC+ 180( )BAC70AGD 二十、解答题20已知点A(2,3),B(4,3),C(1,3)(1)在平面直角坐标系中
5、标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标二十一、解答题21已知某正数的两个平方根分别是和的立方根是是的整数部分(1)求的值;(2)求的算术平方根二十二、解答题22如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?二十三、解答题23已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满
6、足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)二十四、解答题24如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)二十五、解答题25如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线
7、a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、选择题1B解析:B【分析】根据平方根和算术平方根的定义判断即可【详解】解:A4的平方根是2,故错误,不符合题意;B的平方根是4,故正确,符合题意;C-4没有算术平方根,故错误,不符合题意;D-6是36的一个平方根,故错误,不符合题意;故选B【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断2B【分析】根据平移的定义,对选项进行分析,排除错误答案【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故
8、D错误只有B选项为平移故选:B【点睛】解析:B【分析】根据平移的定义,对选项进行分析,排除错误答案【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误只有B选项为平移故选:B【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键3C【分析】根据各象限内点的坐标特征判断即可【详解】由图可知,小手盖住的点在第四象限,点的横坐标为正数,纵坐标为负数,(2,3)符合其余都不符合故选:C【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键4A【分析
9、】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5C【分析】根据一副三角板的特征先得到E=60,C=45,1+2=90,再根据已知求出1=60,从而可证得A
10、CDE,再根据平行线的性质即可求出4的度数【详解】解:根据题意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6B【分析】根据平方根与立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7C【分析】根据两
11、直线平行的性质定理,进行角的转换,再根据平角求得,进而求得【详解】, 又,平分,故选:C【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点8D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(3,1),A
12、5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标与A1的坐标相同,为(2,4)故选:D【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键九、填空题9【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根解析:【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根十、填空题104【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐解析:4【分析】根据横坐标不
13、变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键十一、填空题11【解析】已知C=90,AD是ABC的角平分线,DEAB,根据角平分线的性质可得DC=DE=1;因,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知C=90,AD是ABC的角平分线,DEAB,根据角平分线的性质可得DC=DE=1;因,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.十二、填空题12
14、50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系十三、填空题13或【分析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/
15、CDPEF+解析:或【分析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/CDPEF+CFE=180设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFQ=CFQ=x,75+3x=180,x=35,EFP=35当点Q在CD下方时,如图2设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFC=x,75+x+x=180,解得x=63,EFP=63故答案为:或【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键十四、填空题14,【分析】x)
16、示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义解析:,【分析】x) 示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义知x)xx)+1,由xx)+1变形的x-1x),又x)x联立即可判断【详解】由定义知x)xx)+1,)=-9不正确,x)表示小于x的最大整数,x)x,x) -x0没有最大值,不正确xx)+1,x)-x-1,x)x有最小值是1,正确,由定义知x)xx)+1,由xx)+1变形的x-1x),x)x,xx)x
17、,正确故答案为:【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质x)xx)+1,利用性质解决问题是关键十五、填空题15(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数解析:(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,又因为点P到x轴的距离为2,到y轴的距离为5,所以点P的横坐标为
18、5,纵坐标为2,所以点P的坐标为(5,2),故答案为(5,2)【点睛】此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键十六、填空题162023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点
19、A2021与点A2022之间的距离【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011)点A2021与点A2022的纵坐标相等,点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键十七、解答
20、题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.十八、解答题18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4
21、;(2)3(x-1)解析:(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解十九、解答题193;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得解析:3;两直线平行,同位角相等;已知;等量代换;
22、DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得出AB/DG,根据平行线的性质推出BAC+AGD180,代入求出即可求得AGD【详解】解:EF/AD,23(两直线平行,同位角相等),又12(已知),13(等量代换),AB/DG,(内错角相等,两直线平行)BAC+AGD180,(两直线平行,同旁内角互补)BAC70,AGD110故答案为:3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,AGD,两直线平行,同旁内角互补;110【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性
23、质和判定定理进行推理是解此题的关键二十、解答题20(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解
24、.【详解】解:(1)如图所示,即为所求;(2)A(-2,3),B(4,3),AB=4-(-2)=6;(3)C(-1,-3),C到x轴的距离为3,到直线AB的距离为6;(4)AB=6,C到直线AB的距离为6,;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据
25、即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某解析:(1),c=4;(2)4【分析】(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;(2)代入a、b、c的值求出代数式的值,再求算术平方根即可【详解】解:(1)某正数的两个平方根分别是和又的立方根是3又,c是的整数部分(2)故的算术平方根是4【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键二十二、解答题22(1)30;(2)不能.【解析】【分析】(1)根据已知正方
26、形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意
27、列出算式二十三、解答题23(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作
28、,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键二十四、解答题24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分
29、线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,
30、解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键二十五、解答题25(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在
31、直线a上方或直线b下方时:EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100