1、2023年人教版中学七7年级下册数学期末综合复习卷含答案一、选择题1一个有理数的平方等于,则这个数是()AB或CD2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3若点在第二象限,则点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中,假命题是( )A如果两条直线都与第三条直线平行,那么这两条直线也互相平行B在同一平面内,过一点有且只有一条直线与已知直线垂直C两条直线被第三条直线所截,同旁内角互补D两点的所有连线中,线段最短5为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知ABCD,
2、EAB80,则E的度数是( )A30B40C60D706下列各式正确的是( )ABCD7一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则1的度数为( )A90B75C65D608如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),根据这个规律探索可得,第20个点的坐标为( )A(6,4)B(6,5)C(7,3)D(7,5)九、填空题9的算术平方根是_十、填空题10点关于轴的对称点的坐标为_十一、填空题11若点A(9a,3a)在第二、四象限的角平分
3、线上,则A点的坐标为_十二、填空题12如图,ab,168,242,则3_十三、填空题13如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为_十四、填空题14规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:2.3=2,(2.3)=3,2.3)=2当1x1时,化简x+(x)+x)的结果是_十五、填空题15在平面直角坐标系中,点P的坐标为,则点P在第_象限十六、填空题16如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着
4、运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_十七、解答题17计算(每小题4分)(1) (2)(3) (4)+|2 | + ( -1 )2017 十八、解答题18求下列各式中的值:(1);(2)十九、解答题19如图,三角形中,点,分别是,上的点,且,(1)求证:;(完成以下填空)证明:(已知)(_),又(已知)(等量代换),(_)(2)与的平分线交于点,交于点,若,则_;已知,求(用含的式子表示)二十、解答题20如图,在平面直角坐标系中,A(1,2),B(2,4),C(4,1)ABC中任意一点P(x0,
5、y0)经平移后对应点为P1(x0+2,y0+4),将ABC作同样的平移得到A1B1C1(1)请画出A1B1C1并写出点A1,B1,C1的坐标;(2)求A1B1C1的面积;二十一、解答题21解下列问题:(1)已知;求的值(2)已知的小数部分为的整数部分为,求的值二十二、解答题22(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为正方形的周长为,则_(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他
6、能裁出吗?请说明理由?二十三、解答题23如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值二十四、解答题24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数二十五、解答题25如图,ABC和ADE有公共顶点A
7、,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由【参考答案】一、选择题1B解析:B【分析】根据一个数a,如果,那么a就叫做b的平方根求解即可【详解】解:,36的平方根为6或-6,故选B【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义2B【分析】根据平移的性质,结合图形对选
8、项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3A【分析】首先根据第二象限内点的坐标符号可得到0a1,然后
9、分析出1-a0,进而可得点B所在象限【详解】解:点A(a-1,a)在第二象限,a-10,a0,0a1,1-a0,点B(a,1-a)在第一象限,故选A【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-)4C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案【详解】A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,选项A是真命题,故不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,选项B是真命题,故不符合题意;C.
10、两条直线被第三条直线所截,同旁内角不一定互补,选项C是假命题,故符合题意;D. 两点的所有连线中,线段最短,选项D是真命题,故不符合题意故选:C【点睛】本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理5A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6B【分析】根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可【详解】解:A.,故本选项不合题意;B.,
11、正确;C.,故本选项不合题意;D.,故本选项不合题意故选:B【点睛】本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键7B【分析】根据平行线的性质可得FDCF30,然后根据三角形外角的性质可得结果【详解】解:如图,EFBC,FDCF30,1FDC+C30+4575,故选:B【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解析:A【分析】横坐标
12、为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,第列有个数则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为,则第20个数一定在第6列,由下到上是第4个数因而第20个点的坐标是故选:A【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目九、填空题9【分析】直接利用算术平方根的定义得出答案【详解
13、】解:,的算术平方根是:故答案为:【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义得出答案【详解】解:,的算术平方根是:故答案为:【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键十、填空题10【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知
14、识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.十一、填空题11(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9a+3a0,a6,A点的坐标解析:(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9a+3a0,a6,A点的坐标为(3,3)故答案为:(3,3)【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征十二、填空题12110【
15、分析】如图,利用平行线的性质,求得4=5=1,计算2+5,再次利用平行线的性质,得到3=2+5【详解】如图,ab,4=1=68,5=4=68解析:110【分析】如图,利用平行线的性质,求得4=5=1,计算2+5,再次利用平行线的性质,得到3=2+5【详解】如图,ab,4=1=68,5=4=68,2=42,5+2=68+42=110,ab,3=2+5,3=110,故答案为:110【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键十三、填空题13111【分析】结合题意,根据轴对称和长方形的性质,得,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可
16、得到答案【详解】根据题意,得, , 解析:111【分析】结合题意,根据轴对称和长方形的性质,得,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案【详解】根据题意,得, , 故答案为:111【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解十四、填空题142或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x)0,x)=0,x解析:2或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x
17、)0,x)=0,x+(x)+x)0;当时,x0,(x)1,x)=0或1,x+(x)+x)1或2;综上所述,化简x+(x)+x)的结果是-2或1或0或1或2.故答案为-2或1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!十五、填空题15三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为负数,点P的符号为(-,-)点P在第三象限故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为负数,点P的
18、符号为(-,-)点P在第三象限故答案为:三【点睛】本题考查了点的坐标解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数牢记点在各象限内坐标的符号特征是正确解答此类题目的关键四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2
19、,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,每5次一轮这一规律,进而求出即可【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,20215=4041,经过2021次运动横坐标为=4404+1=161
20、7,经过2021次运动纵坐标为2,经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2)故答案为:(1617,2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键十七、解答题17(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计
21、算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2 (2)原式=(3)原式=2+(-2)+1=1 (4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.十八、解答题18(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),或,或;(2),;【点睛】本题主要考查了平方根的性质应用和解析:(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根
22、据立方根的性质求解即可;【详解】(1),或,或;(2),;【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键十九、解答题19(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可计算出;根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出【
23、详解】解:证明(1)证;证明:(已知),(两直线平行,同位角相等),又(已知)(等量代换),(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行(2)与的平分线交于点,交于点,且,由(1)知,在中,故答案是:;,由(1)知,在中,故答案是:【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解二十、解答题20(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2)利用分割
24、法求解即可【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标(2)利用分割法求解即可【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3)(2)A1B1C1的面积=33-32-12-13=【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题二十一、解答题21(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的
25、值,进而得出答案【详解】原式解析:(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案【详解】原式【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键二十二、解答题22(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆
26、和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,设大正方形的边长为xcm, , 大正方形的边长为cm;(2)设圆的半径为r,由题意得,设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:正方形的面积为900cm2,正方形的边长为30cm长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,长方形纸片的长大于正方
27、形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查二十三、解答题23(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的
28、性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意
29、.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键二十四、解答题24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程
30、可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键二十五、解答题25(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,
31、HF,再证明AO=OG=2,可得结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,OAG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,OF=GH-HF-OG=4-1-2=1结论:N+M=142.5,度数不变理由:如图2中,MF,MO分别平分AFO,AOF,M=180-(AFO+AOF)=180-(180-FAO)=90+FAO,NH,NG分别平分DHG,BGH,N=180-(DHG+BGH)=180-(HAG+AGH+HAG+AHG)=180-(180+HAG)=90-HAG=90-(30+FAO+45)=52.5-FAO,M+N=142.5【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用FAO表示出M,N
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100