1、人教版七年级下册数学期末综合复习卷含解析 一、选择题 1.下列四个图形中,和是内错角的是( ) A. B. C. D. 2.下列运动属于平移的是( ) A.汽车在平直的马路上行驶 B.吹肥皂泡时小气泡变成大气泡 C.铅球被抛出 D.红旗随风飘扬 3.在平面直角坐标系中,点(-1,-3)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,是假命题的是( ) A.两条直线被第三条直线所截,同位角相等 B.同旁内角互补,两直线平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.如果两条直线都与第三条直线平
2、行,那么这两条直线也互相平行 5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( ) A. B. C.或 D.或 6.若,则x和y的关系是( ). A.x=y=0 B.x和y互为相反数 C.x和y相等 D.不能确定 7.如图,把一个长方形纸条沿折叠,已知,,则为( ) A.30° B.28° C.29° D.26° 8.如图所示,在平面直角坐标系中,有若干个整数点,其排列顺序按图中箭头方向排列,如,,,,,根据这个规律探索可得,第2021个点的坐标为( ) A. B. C. D. 九、填空题 9.若,则±=_
3、. 十、填空题 10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 十一、填空题 11.如图,已知在四边形ABCD中,∠A=α,∠C=β,BF,DP为四边形ABCD的∠ABC、∠ADC相邻外角的角平分线.当α、β满足条件____________时,BF∥DP. 十二、填空题 12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________. 十三、填空题 13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____. 十四、填空题 14.对于
4、有理数x、y,当x≥y时,规定x※y=yx;而当x 5、题
18.求下列各式中的x.
(1)x2-81=0
(2)(x﹣1)3=8
十九、解答题
19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.
请在下列括号中填上理由:
证明:因为(已知),所以(_______).
又因为(已知),所以,即,
所以_______(同位角相等,两直线平行),所以(_______).
二十、解答题
20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).
(1)请在图中画出坐标轴,建立直角坐标系 6、
(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.
二十一、解答题
21.(阅读材料)
∵,即23,∴11<2,∴1的整数部分为1,∴1的小数部分为2
(解决问题)
(1)填空:的小数部分是 ;
(2)已知a是4的整数部分,b是4的小数部分,求代数式(﹣a)3+(b+4)2的值.
二十二、解答题
22.如图1,用两个边长相同的小正方形拼成一个大的正方形.
(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长 7、为 dm.
(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.
二十三、解答题
23.已知点C在射线OA上.
(1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;
(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示)
(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.
二十四、解答题
2 8、4.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
二十五、解答题
25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化) 9、
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.
【详解】
解:A、∠1与∠2不是内错角,选项错误,不符合题意;
B、∠1与∠2不是内错角,选项错误,不符合题意;
C、∠1与∠2是内错角,选项正确,符合题意;
D、∠1和∠2不是内错角,选项错误,不符合题意;
故选:C.
【点睛】
本题考查 10、了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.
2.A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移
解析:A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;
C、铅球被抛出是旋转与平移组合,故C选项不符合;
D、随风摆动的红旗,不属 11、于平移,故D选项不符合.
故选:A.
【点睛】
此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.C
【分析】
根据平面直角坐标系中象限内点的特征判断即可;
【详解】
∵,,
∴点(-1,-3)位于第三象限;
故选C.
【点睛】
本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键.
4.A
【分析】
根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.
【详解】
解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;
B. 同旁内 12、角互补,两直线平行,真命题,不符合题意;
C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;
D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;
故选A.
【点睛】
本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.
5.D
【分析】
分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合 13、∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.
【详解】
解:当点D在线段AB上时,如图1所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE+∠CDE=84°+20°=104°;
当点D在线段AB的延长线上时,如图2所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE-∠CDE=84°-20°=64°.
综上所述:∠ADC=104°或64°.
故选:D.
【点睛】
本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.
6.B
【解 14、析】
分析:先移项,再两边立方,即可得出x=-y,得出选项即可.
详解:
∵,
∴,
∴x=-y,
即x、y互为相反数,
故选B.
点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.
7.C
【分析】
由 AE平行BD,可得∠AED=∠ADB=32°,可求∠BAE=122°,由折叠,可得∠BAF=∠EAF,可求∠EAF=61°即可
【详解】
∵AE//BD,
∴∠AED=∠ADB=32°,
∴∠BAE=∠BAD+∠DAE=90°+32°=122°,
∵折叠,
∴∠BAF=∠EAF,
∴2∠EAF=∠BAE=122°
∴∠EAF=61°
∴∠ 15、DAF=∠EAF-∠EAD=61°-32°=29°
故选择C
【点睛】
本题考查平行线性质,掌握折叠性质,平行线性质是解题关键.
8.A
【分析】
通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标.
【详解】
解:将
解析:A
【分析】
通过观察可以发现每列的数的个数是有规律的,分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,按这个规律即可求出第2021个点的坐标.
【详解】
解:将点(1,0)作为第1列,
将横坐标 16、为2的点即点(2,0)和点(2,1)作为第2列,
将横坐标为3的点作为第3列,依次类推……;
则第n列的点的横坐标为n,令前n列一共有的点的个数为,
当时,,
则第2021个点在64列自下向上第4个数,则该点坐标为.
故选A.
【点睛】
本题综合考查了平面直角坐标系中的点的坐标规律,观察发现点的分布规律,即每一列点的变化规律以及运动方向或顺序等以及数形结合思想的运用成为解答本题的关键.
九、填空题
9.±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
17、
【点睛】
本题考查了算术平方根的移
解析:±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
【点睛】
本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.
十、填空题
10.【分析】
如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质
解析:
【分析】
如图,设点P关于直线y=x-1的对称点是点 18、Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标.
【详解】
解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,
设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1),
∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°,
∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PA 19、Q=90°,∴AQ⊥x轴,
∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3).
故答案为:(4,﹣3).
【点睛】
本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键.
十一、填空题
11.α=β
【详解】
试题解析:
当BF∥DP时,
即:
整理得:
故答案为
解析:α=β
【详解】
试题解析:
当BF∥DP时,
即:
整理 20、得:
故答案为
十二、填空题
12.35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
解析:35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70° 21、
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分 22、情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=
解析:或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=2※m=36
当时,原式可化为
解得:
;
当时,原式可化为:
解得:;
综上所述,m的值为:或;
故答案为:16;或.
【点睛】
本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.
十五、填空题
15.(-4,8)
【分析 23、
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a
解析:(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a+2-3a=12,
解得a=-2,
∴2a=-4,2-3a=8,
∴点P的坐标为(-4,8).
故答案为:(-4,8).
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点 24、的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且
解析:(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据 25、第二项象限点的规律即可得出结论.
【详解】
解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,
∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵2021÷4=505…1,
∴点P2021在第二象限,
∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),
∴点P2021(﹣506,505),
故答案为:(﹣506,505).
【点睛】
本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位 26、置,该位置处点的规律,然后就可以进一步推得点的坐标.
十七、解答题
17.(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点
解析:(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点睛】
本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则 27、是解题关键.
十八、解答题
18.(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(
解析:(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(2)方程整理得:(x-1)3=8,
开立方得:x-1=2,
解得:x=3.
【点睛】
本题考查了平方根、立方根,熟练掌握 28、各自的定义是解本题的关键.
十九、解答题
19.两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知
解析:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知),
所以,
即,
所以(同位角相等,两直线平行),
所以(两直线平行,同旁内角互补.
故答案为:两直线平行 29、同位角相等;;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.
二十、解答题
20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质
解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积.
【 30、详解】
解:(1)平面直角坐标系如图所示:
(2)因为点A(−1,0)落在A′(0,4),同时点P(m,n)落在P′(n,6),
∴,解得,
∴点P的坐标为(1,2);
如图,线段PC扫过的面积即为平行四边形PCC′P′的面积,
∴线段PC扫过的面积为.
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
( 31、1)∵81<91<1
解析:(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<100,
∴9<<10,
∴的整数部分是9,
∴的小数部分是9;
(2)∵16<21<25,
∴4<<5,
∵a是4的整数部分,b是4的小数部分,
∴a=4﹣4=0,b4,
∴(﹣a)3+(b+4)2=0+21=21.
【点睛】
本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.
二十二 32、解答题
22.(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:
解析:(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:(1)∵正方形纸片的面积为,
∴正方形的边长,
∴.
故答案为:.
(2)不能;
根据题意设长方形的长和宽分别为和.
∴长方形面积为:,
解得 33、
∴长方形的长边为.
∵,
∴他不能裁出.
【点睛】
本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.
二十三、解答题
23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′
【分析】
(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;
(2)
解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′
【分析】
(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE 34、的度数;
(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;
(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.
【详解】
解:(1)∵CD∥OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;
(2)∠OCD+∠BO′E′=360°-α.
证明:如图②,过O点作OF∥CD,
∵CD∥O′E′,
35、
∴OF∥O′E′,
∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,
∴∠OCD+∠BO′E′=360°-α;
(3)∠AOB=∠BO′E′.
证明:∵∠CPO′=90°,
∴PO′⊥CP,
∵PO′⊥OB,
∴CP∥OB,
∴∠PCO+∠AOB=180°,
∴2∠PCO=360°-2∠AOB,
∵CP是∠OCD的平分线,
∴∠OCD=2∠PCO=360°-2∠AOB,
∵由(2)知,∠OCD+∠BO′E′=360° 36、α=360°-∠AOB,
∴360°-2∠AOB+∠BO′E′=360°-∠AOB,
∴∠AOB=∠BO′E′.
【点睛】
此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.
二十四、解答题
24.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF 37、∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定 38、解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
二十五、解答题
25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当
解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时 39、∠EPB=|n°﹣50°|.
【分析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;
【详解】
解:(1)∵BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC=50°,
∵∠EPB是△PFB的外角,
∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;
(2)①当交点P在直线b的下方时:
∠EPB=∠1﹣50°=20°;
②当交点P在直线a,b之间时:
∠EPB=50°+(180°﹣∠1)=160°;
③当交点P在直线a的上方时:
∠EPB=∠1﹣50°=20°;
(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;
②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
【点睛】
考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.






