ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:1.21MB ,
资源ID:1921839      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1921839.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级上册压轴题数学试题含解析(一)[001].doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级上册压轴题数学试题含解析(一)[001].doc

1、八年级上册压轴题数学试题含解析(一)1如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数2在平面直角坐标系中,点在第一象限,(1)如图,求点的坐标(2)如图,作的角平分线,交于点,过点作于点,求证:(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标3如图,ACB和DCE均为等腰三角形,点A,D,E

2、在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数(2)如图2,若ACBDCE90,CF为DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论4如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离5如图1,

3、在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且ABO45,A(6,0),直线BC与直线AB关于轴对称.(1)求ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角BDE,求证:ABAE; (3)如图3,点E是轴正半轴上一点,且OAE30,AF平分OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OMNM的值最小?若存在,请写出其最小值,并加以说明.6如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB分别交坐标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE

4、,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求证:点G是BN中点7我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”(1)如下:平行四边形,矩形,菱形,正方形,一定是“菠菜四边形”的是_(填序号);(2)如图1,四边形ABCD为“菠菜四边形”,且BADBCD90,ADAB,AECD于点E,若AE4,求四边形ABCD的面积;(3)如图2,四边形ABCD为“菠菜四边形”,且ABAD,记四边形ABCD,BOC,AOD的面积依次为S,若求证

5、:ADBC;在的条件下,延长BA、CD交于点E,记BCm,DCn,求证:8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由

6、题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,

7、连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键3(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;(3)解析:(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;

8、(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标【详解】解:如图中,作垂足为,在和中,点坐标;如图,延长相交于点,在和中,在和中,;(3)如图,过点P作轴于点D,在和中,;如图,过点P作轴于点D,在和中,;如图,过点P作轴于点E,过点A作于点D,在和中,设,解得,;综上:点P的坐标是或或【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想4(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“

9、AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解】(1)证明:CABCBACDECED50,ACBDCE18025080,ACBAC

10、D+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBECCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键5(1

11、)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=90或ABC=90,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点

12、C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是直角三角形,且ACB=45,只有BAC=90或ABC=90,、当BAC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,

13、AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BOECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE=90,CBF+BEA=90,BAE=CBF,在ABE和BCF中,ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DC

14、F,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题6(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出A

15、C=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点F,延长EA交y轴于点H,证DEFBDO,得出EFODAF,有,得出BAE90.(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6(2)过E作EFx轴于点F,延长EA交y轴于点H,BDE是等腰直角三角形,DE=DB, BDE=90,EF轴,DF=BO=AO,EF=ODAF=EFBAE90(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O

16、到直线AE的距离,即点O到直线AE的垂线段的长,OA=6,OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.7(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在解析:(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCAE,

17、证AFDCED,即可得出答案;(3)作EOOP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AOCF,CFAODAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90,又

18、ABOCAG,ABAC,BADACH(ASA),ADCH,ADBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOPFOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GK

19、BOPFOPL+45,GKBOPLGPN,又KGBPGN,KBGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型8(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,解析:(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形

20、的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,求出,求出,代入求解即可;(3)记面积为,则,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论(1)根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,故答案为:(2)如图,过A作,交CB的延长线于F, 四边形AFCE是矩形则 四边形AFCE是正方形, 即四边形ABCD的面积为16(3)记,如图:作, AMAD四边形AMND为平行四边形ADMNADBCADBC又ADABBD

21、平分如图:又【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服