ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:990.04KB ,
资源ID:1920740      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1920740.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版初二上学期压轴题模拟数学综合试题带解析(一)[001].doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初二上学期压轴题模拟数学综合试题带解析(一)[001].doc

1、人教版初二上学期压轴题模拟数学综合试题带解析(一)1操作发现:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它

2、作法与图3相同,猜想AF,BF与AB在上题中的结论是否仍然成立,若不成立,请给出你的结论并证明。3已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由3如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:4阅读

3、下列材料,完成相应任务数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,;中,连接试探究与的数量关系,并说明理由5在ABC中,AB=AC

4、,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论6如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.7如图,是等边三角形,点在上,点在的延长线上,且(

5、1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论(3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由8如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且(1)直接写出的度数(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值【参考答案】2成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:

6、通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=解析:成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=6

7、0(等边三角形的性质);同理知,DC=CF,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,

8、AF=BD;AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.3(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得

9、证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE

10、=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题4(1);

11、(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2

12、ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD

13、+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键5任务一

14、:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详解】解:任务一:依据1:两边和它们的夹角分别相等的两个三

15、角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BAE=90,CAF=90EAF+BAC=360-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAFGCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键6(1)90;(2),理由见

16、解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB解析:(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB45,即可解决问题;(2)证明BADCAE,得到BACE,BACB,即可解决问题;证明BADCAE,得到ABDACE,借助三角形外角性质即可解决问题【详解】解:(1)AB=AC,BAC=90,ABC=ACB=45,DAE=BAC,BAD=CAE,AB=AC,AD=AE,BADCAE(SA

17、S)ABC=ACE=45,BCE=ACB+ACE=90,故答案为:;(2)理由:,即又,如图:当点D在射线BC上时,+=180,连接CE,BAC=DAE,BAD=CAE,在ABD和ACE中,ABDACE(SAS),ABD=ACE,在ABC中,BAC+B+ACB=180,BAC+ACE+ACB=BAC+BCE=180,即:BCE+BAC=180,+=180,如图:当点D在射线BC的反向延长线上时,=连接BE,BAC=DAE,BAD=CAE,又AB=AC,AD=AE,ABDACE(SAS),ABD=ACE,ABD=ACE=ACB+BCE,ABD+ABC=ACE+ABC=ACB+BCE+ABC=18

18、0,BAC=180-ABC-ACB,BAC=BCE=;综上所述:点D在直线BC上移动,+=180或=【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点7(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(解析:(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)

19、(2)当动点沿轴正方向运动时,如解图-2-1:当动点沿轴负方向运动时,如解图-2-2:(3)过作,连在与 ,在与中 ,是等边三角形,又【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键8(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据

20、BD=DE即可解题;(2)过D作DFBC,交AB于F,证BFDDCE,推出DF=CE,证ADF是等边三角形,推出AD=DF,即可得出答案(3)如图3,过点D作DPBC,交AB的延长线于点P,证明BPDDCE,得到PD=CE,即可得到AD=CE【详解】证明:是等边三角形,为中点,,;(2)成立,如图乙,过作,交于,则是等边三角形,在和中,即如图3,过点作,交的延长线于点,是等边三角形,也是等边三角形,,,在和中,【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形9(1);(2);(3)【分析】(1)根据坐标系

21、写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明解析:(1);(2);(3)【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F作轴交CB的延长线于点N,证明,设,则等边三角形ABC的边长是4a,进而计算可得,即可求得的值【详解】(1)点在x轴负半轴上,如答图1,在x轴的正半轴上取点C,使,连接BC,又,是等边三角形,;(2)如答图2,连接BM,是等边三角形,D为AB的中点,在和中,即,为等边三角形,;(3)如答图3,过点F作轴交CB的延长线于点N,则,在和中,又E是OC的中点,设,等边三角形ABC的边长是4a,在和中,又,【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服