1、人教七年级下册数学期末试卷含答案一、选择题1如图,1和2不是同位角的是()ABCD2为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )ABCD3在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( )A第一象限B第二象限C第三象限D第四象限4下列命题:平面内,垂直于同一条直线的两直线平行;经过直线外一点,有且只有一条直线与这条直线平行;垂线段最短;同旁内角互补其中,正确命题的个数有( )A3个B2个C1个D0个5将一副三角
2、板按如图放置,如果,则有是( )A15B30C45D606下列语句中正确的是( )A-9的平方根是-3B9的平方根是3C9的立方根是D9的算术平方根是37一把直尺和一块直角三角尺(含30、60角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若CAF42,则CDE度数为( )A62B48C58D728如图,在平面直角坐标系中,把一条长为个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另一端所在位置的点的坐标是( )ABCD九、填空题9已知非零实数a.b满足|2a-4|+
3、|b+2|+4=2a,则2a+b=_十、填空题10已知点,点关于x轴对称,则的值是_十一、填空题11如图,BE是ABC的角平分线,AD是ABC的高,ABC=60,则AOE=_十二、填空题12如图,点D、E分别在AB、BC上,DEAC,AFBC,170,则2_十三、填空题13如图a是长方形纸带,将纸带沿 EF折叠成图b,再沿BF折叠成图c,若AEF=160,则图 c 中的CFE的度数是_度十四、填空题14新定义一种运算,其法则为,则_十五、填空题15点到两坐标轴的距离相等,则_十六、填空题16如图,在直角坐标系中,A(1,3),B(2,0),第一次将AOB变换成OA1B1,A1(2,3),B1(
4、4,0);第二次将OA1B1变换成OA2B2,A2(4,3),B2(8,0),第三次将OA2B2变换成OA3B3,则B2021的横坐标为_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19如图,已知:,求证:证明:(已知),_(_)(_),_(等量代换)(_)二十、解答题20如图,的顶点坐标分别为:,将平移得到,使点的对应点为(1)可以看作是由先向左平移 个单位,再向下平移 个单位得到的;(2)在图中作出,并写出点、的对应点、的坐标;(3)求的面积二十一、解答题21阅读下面的文字,解答问题大家知
5、道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:(1)若的整数部分为,小数部分为,求的值(2)已知:,其中是整数,且,求的值二十二、解答题22工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)二十三、解答题23已知,定点,分别在直线,上,在平行线,之间有一动点(1
6、)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)二十四、解答题24如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理
7、由二十五、解答题25(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB
8、经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可【详解】解:A、1和2是同位角,故此选项不符合题意;B、1和2是同位角,故此选项不符合题意;C、1和2是同位角,故此选项不符合题意;D、1和2不是同位角,故此选项符合题意;故选:D【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键2B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解
9、【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键3D【分析】设点 ,分轴和轴,两种情况讨论,即可求解【详解】解:设点 ,若轴,则点P、Q的纵坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ;若轴,则点P、Q的横坐标相等,线段,若
10、点坐标是, , ,解得: 或 , 或 ,点 或或 或 ,点不在第四象限故选:D【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键4A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案【详解】平面内,垂直于同一条直线的两直线平行;故正确,经过直线外一点,有且只有一条直线与这条直线平行,故正确垂线段最短,故正确,两直线平行,同旁内角互补,故错误,正确命题有,共3个,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以
11、写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5C【分析】根据一副三角板的特征先得到E=60,C=45,1+2=90,再根据已知求出1=60,从而可证得ACDE,再根据平行线的性质即可求出4的度数【详解】解:根据题意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6D【分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【详解】A. 负数没有平方根,故A选项错误;B. 9的平方根是3,故B选项错误;C. 9的立方根是,故C选项错
12、误;D. 9的算术平方根是3,正确,故选D.【点睛】本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.7B【分析】先根据平行线的性质求出CED,再根据三角形的内角和等于180即可求出CDE【详解】解:DEAF,CAF=42,CED=CAF=42,DCE=90,CDE+CED+DCE=180,CDE=180-CED-DCE=180-42-90=48,故选:B【点睛】本题主要考查了平行线的性质以及三角形内角和等于180,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键8C【分析】先求出四边形ABCD的周长为10,得到201810的余数为8,由此即可解
13、决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),AB1(1解析:C【分析】先求出四边形ABCD的周长为10,得到201810的余数为8,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),AB1(1)2,BC1(2)3,CD1(1)2,DA1(2)3,绕四边形ABCD一周的细线长度为232310,2018102018,细线另一端在绕四边形第202圈的第8个单位长度的位置,即细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,1)故选:C【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定
14、2018个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键九、填空题94【分析】首先根据算术平方根的被开方数0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2a+b的值【详解】解:解析:4【分析】首先根据算术平方根的被开方数0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2a+b的值【详解】解:由题意可得a3,2a-40,已知等式整理得:|b+2|+=0,a=3,b=-2,2a+b=23-2=4故答案为4【点睛】本题考查非负数的性质
15、:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键十、填空题10-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详解】解:点,点关于x轴对称,;解得:,故答案为-6【点睛】本题考查平面直解析:-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可【详解】解:点,点关于x轴对称,;解得:,故答案为-6【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数十一、填空题1160【分析】先根据角平分线的定义求出DOB的度数,再由三角
16、形外角的性质求出BOD的度数,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBA解析:60【分析】先根据角平分线的定义求出DOB的度数,再由三角形外角的性质求出BOD的度数,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBABC6030,AD是ABC的高,ADC90,ADC是OBD的外角,BODADCOBD903060,AOEBOD60,故答案为60.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.十二、填空题1270【分析】根据两直线平行,同位角相等可得C=1,再根据两直线平行,内错角相等可得2=C
17、【详解】DEAC,C170,AFBC,2C70故答解析:70【分析】根据两直线平行,同位角相等可得C=1,再根据两直线平行,内错角相等可得2=C【详解】DEAC,C170,AFBC,2C70故答案为70【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键十三、填空题13120【分析】先根据平行线的性质,设,根据图形折叠的性质得出,再由三角形外角的性质解得,再由平行线的性质得出GFC,最后根据即可解题【详解】折叠DEF,解析:120【分析】先根据平行线的性质,设,根据图形折叠的性质得出,再由三角形外角的性质解得,再由平行线的性质得出GFC,最后根据即可解题【详解】折叠DEF,故答案为:
18、120【点睛】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解十五、填空题15或【分析】根据到两坐标轴的距离相等,可知横纵坐标
19、的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距解析:或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值十六、填空题16【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:【分析】根据点B(2,0),B1(4,0),B2(8,
20、0),B3(16,0)可得规律为横坐标为,由此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:,B2021的横坐标为;故答案为【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律十七、解答题17(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1
21、)解:原式=(2)解:原式 =【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键十八、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x
22、+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得C解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据
23、同旁内角互补,两直线平行可得CBDE【详解】证明:ABCD,B=C(两直线平行,内错角相等),B+D=180(已知),C+D=180(等量代换),CBDE(同旁内角互补,两直线平行)故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明二十、解答题20(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图
24、见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形的面积【详解】解:(1)平移后对应点为,可以看作是由先向左平移6个单位,再向下平移6个单位得到的故答案为:6;6;(2)作出如图所示点、的对应点、的坐标分别为:,;(3)将三角形补成如图所示的正方形,则其面积为:【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形二十一、解答题21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即
25、可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-3 =+-3-=6(2) 12又10+=x+y,其中x是整数,且0y1,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键二十二、解答题22(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)
26、设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题二十三、解答题23(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF
27、+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点
28、在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键二十四、解答题24(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3t,则AOC=30+6t,
29、由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON=60,t=603=20经过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:AON+BOM=90,
30、BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键二十五、解答题25【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+解析:【现
31、象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角形内角和定理即可得出BEC=180-110=70;深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BED=ABC-BCD=(180
32、-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=180-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100