1、人教版初二上学期压轴题强化数学质量检测试题解析(一)1如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由2如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CB
2、D45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P,连PM、PO试探究PM和PO的关系3如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其
3、值;若不是,请求其取值范围4已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长AB交DE于M,DB=,如图3,则BM=_(直接写出结果)5如图1,在平面直角坐标系中,且ACB90,ACBC(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰RtBDG,且BDDG,BDG90,连接AG,点H为AG的中点,试猜想线段D
4、H与线段CH的数量关系与位置关系,并证明你的结论6方法探究:已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x3)设另一个因式为(xk),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:我们把以上分解因式的方法叫“试根法”问题解决:(1)对于二次多项式,我们把x 代入该式,会发现成立;(2)对于三次多项式,我们把x1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;(3)对于多项式,用“试根法”分解因式7已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接
5、,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2
6、)利用已知证明,再证解析:(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形
7、本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键3(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延
8、长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.4(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AO
9、B的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结论:OAB是等腰直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNO
10、Q,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM3,BNOM3(3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和FBP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键5(1)见解析(2)见
11、解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB,BC=BE,ABD=CBE=60,ABD+ABC=CBE+ABC,
12、DBC=ABE,ABEDBC(SAS),AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH / AD交AM的延长线于H,H=BAD=60,BCE是等边三角形,BC
13、=BE,CBE=60,ABC=90,EBH=90CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键6(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CT解析:(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴
14、于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CTBH2,可得结论;(2)结论:MNME+NF证明BFNBEK(SAS),推出BNBK,FBNEBK,再证明BMNBMK(SAS),推出MNMK,可得结论;(3)结论:DHCH,DHCH如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点M证明JDC是等腰直角三角形,可得结论【详解】解:(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点HA(0,4),C(2,2),OA4,OTCT2,AT4+26,ACBATCH90,CAT+ACT90,BCH+CBH90,CA
15、TBCH,CACB,ATCCHB(AAS),ATCH6,CTBH2,THCHCT4,B(4,-4);(2)结论:MNME+NF理由:在射线OE上截取EKFN,连接BKB(4,4),BEy轴,BFx轴,BEBF4,BEOBFOEOF90,四边形BEOF是矩形,EBF90,EKFN,BFNBEK90,BFNBEK(SAS),BNBK,FBNEBK,NBKFBE90,MBN45,MBNBMK45,BMBM,BMNBMK(SAS),MNMK,MKME+EK,MNEM+FN;(3)结论:DHCH,DHCH理由:如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点MAHHG,AHJGH
16、D,HJHD,AHJGHD(SAS),AJDG,AJHDGH,AJDM,JACAMD,DGBD,AJBD,MCBBDM90,CBD+CMD180,AMD+CMD180,AMDCBD,CAJCBD,CACB,CAJCBD(SAS),CJCD,ACJBCD,JCDACB90,JHHD,CHDJ,CHJHHD,即CHDH,CHDH【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题7(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x
17、3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(解析:(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可(1)解:当x=2时,x2-4=0,故答案为:2;(2)解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,1-a=1,
18、b=-3,a=0,b=-3;(3)解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,多项式有因式(x-2),设另一个因式为(x2+ax+b),x3+4x2-3x-18=(x-2)(x2+ax+b),x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,a-2=4,2b=18,a=6,b=9,x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键8(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方
19、程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AFC=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使DH=AD,连接BH,E
20、F=2AD,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,ABH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=ABH,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=15
21、0,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨
22、论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100