1、人教版七年级下册数学期末综合复习试卷含解析一、选择题1如图所示,下列说法正确的是( )A和是内错角B和是同旁内角C和是同位角D和是内错角2为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )ABCD3若点在第二象限,则点在第( )象限A一B二C三D四4下列命题是假命题的是( )A垂线段最短B内错角相等C在同一平面内,不重合的两条直线只有相交和平行两种位置关系D若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5如图,直线
2、,三角板的直角顶点在直线上,已知,则等于( )A25B55C65D756若a216,2,则a+b的值为()A12B4C12或4D12或47如图,AB/CD,EBF2ABE,ECF3DCE,设ABE,E,F,则,的数量关系是()A4+360B3+360C4360D323608如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,根据这个规律探索可得,第2021个点的坐标为( )ABCD九、填空题9计算:的结果为_十、填空题10已知点,点关于x轴对称,则的值是_十一、填空题11如图,直线与直线交于点,、是与的角平分线,则_度十二、填空题12已知,且,请直接写出、的数量关系_十三、
3、填空题13如图,有一条直的宽纸带,按图折叠,则的度数等于_十四、填空题14对于任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_十五、填空题15点关于轴的对称点的坐标是_十六、填空题16如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),根据这个规律探索可得第2021个点的坐标是_十七、解答题17计算下列各式的值:(1)|2| + (1)2021;(2)十八、解答题18求下列各式中的x(1)x281=0(2)(x1)3=8十九、解答题19已知:
4、,垂足分别为B,D,求证:,请你将证明过程补充完整证明:,垂足分别为B,D(已知)(垂直定义)_()_()又(已知)2(),_()()二十、解答题20如图,在平面直角坐标系中,已知三角形三点的坐标分别为,(1)求三角形的面积;(2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标二十一、解答题21已知某正数的两个平方根分别是和的立方根是是的整数部分(1)求的值;(2)求的算术平方根二十二、解答题22学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说
5、明理由(取3)二十三、解答题23已知:直线ABCD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点Q,若H140,求ENQ的度数(可直接运用中的结论)二十四、解答题24如图1,E是、之间的一点(1)判定,与之间的数量关系,并证明你的结论;(2)如图2,若、的两条平分线交于点F直接写出与之间的数量关系;(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求
6、的大小二十五、解答题25如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q
7、,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值【参考答案】一、选择题1B解析:B【分析】利用“三线八角”的定义分别判断后即可确定正确的选项【详解】解:A、1和2是同旁内角,故错误;B、1和2是同旁内角,正确;C、1和5不是同位角,故错误;D、1和4不是同旁内角,故错误,故选:B【点睛】本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大2B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,
8、符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键3C【分析】应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限【详解】解:点在第二象限,1+a0,1-b0;a0,x=9,正方形的周长为49=36,设建成圆形时圆的半径为r米,由题意得:r2=81解得:,r0,圆的周长=,建成圆形草坪时所花
9、的费用较少,故选择建成圆形草坪的方案【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键二十三、解答题23(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线性质、邻补角和为180,角与角
10、之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(1)证明:过点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMHGNDGNDDNH180,DN
11、HMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)又AMHHNCMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENHNHT180(两直线
12、平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强二十四、解答题24(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,解析:(1),见解析;(2
13、);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,由(1)的结论得AFDBAFCDF,根据角平分线的定义得到BAFBAE,CDFCDE,则AFD(BAECDE),加上(1)的结论得到AFDAED;(3)由(1)的结论得AGDBAFCDG,利用折叠性质得CDG4CDF,再利用等量代换得到AGD2AEDBAE,加上90AGD1802AED,从而可计算出BAE的度数【详解】解:(1)理由如下:作,如图1,;(2)如图2,由(1)的结论得,、的两条平分线交于点F,;(3)由(1)的结论得,而射线沿翻折交于点G
14、,【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等二十五、解答题25(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC
15、,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为
16、70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100