1、人教版七年级数学下册期末学业水平卷(附解析)一、选择题1的平方根是()A4BC2D2下列车标,可看作图案的某一部分经过平移所形成的是( )A BCD3在平面直角坐标系中,下列各点在第二象限的是( )ABCD4下列命题是假命题的是( )A三角形三个内角的和等于B对顶角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D两条直线被第三条直线所截,同位角相等5如图,点为上方一点,分别为的角平分线,若,则的度数为( )ABCD6有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3);(4)是无理数;(5)当时,一定有是正数,其中正确的说法有( )A1个B2个C3个D4个7将45的
2、直角三角形纸片和矩形纸片按如图方式折叠放在一起,若1=31,则2的度数为( )A10B14C20D318如图,动点在平面直角坐标系中,按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是( )ABCD九、填空题9若|y+6|+(x2)2=0,则y x=_十、填空题10已知点P(3,1)关于x轴的对称点Q的坐标是(ab,1b),则a_,b_十一、填空题11如图,AD、AE分别是ABC的角平分线和高,B50,C70,则DAE_十二、填空题12如图,直角三角板直角顶点在直线上已知,则的度数为_
3、十三、填空题13将一条长方形纸带按如图方式折叠,若,则的度数为_十四、填空题14如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是_十五、填空题15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.十六、填空题16育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算下列各式的值:(1) (2)十八、解答题18求满足
4、下列各式x的值(1)2x280;(2)(x1)34十九、解答题19已知,如图所示,BCE,AFE是直线,AB/CD,1=2,3=4求证:AD/BE 证明:AB/CD(已知)4= ( )3=4(已知)3= ( )1=2(已知)1+CAF=2+CAF( )即: = 3= AD/BE( )二十、解答题20在平面直角坐标系中,ABC三个顶点的坐标分别是A(2,2)、B(2,0),C(4,2)(1)在平面直角坐标系中画出ABC;(2)若将(1)中的ABC平移,使点B的对应点B坐标为(6,2),画出平移后的ABC;(3)求ABC的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是
5、无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的因为的整数部分是,将这个数减去其整数部分,差就是小数部分根据以上内容,请解答:已知,其中是整数,求的值二十二、解答题22求下图的方格中阴影部分正方形面积与边长二十三、解答题23已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数二十四、解答题24已知,直角的边与直线a分别相交于O、G两点,与直线b
6、分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论二十五、解答题25如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数
7、量关系?直接写出猜想结论,不需说明理由【参考答案】一、选择题1D解析:D【分析】先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答【详解】解:,4的平方根是,故选D【点睛】本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根2D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不
8、是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义3D【分析】根据在第二象限的点的特征进行判断,即可得到答案【详解】解:第二象限的点特征是横坐标小于零,纵坐标大于零,点(-3,7)在第二象限,故选D【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定
9、和性质逐一判断即可.【详解】解:A、三角形三个内角的和等于180,故此说法正确,是真命题;B、对顶角相等,故此说法正确,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.5A【分析】过G作GMAB,根据平行线的性质可得2=5,6=4,进而可得FGC=2+4,再利用平行线的性质进行等量代换可得31=210,求出1的度数,然后可得答案【详解】解:过G作GMAB,2=5,ABCD,MGCD,6=4,F
10、GC=5+6=2+4,FG、CG分别为EFG,ECD的角平分线,1=2=EFG,3=4=ECD,E+2G=210,E+1+2+ECD=210,ABCD,ENB=ECD,E+1+2+ENB=210,1=E+ENB,1+1+2=210,31=210,1=70,EFG=270=140故选:A【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等6B【分析】根据平方根与立方根的定义与性质逐个判断即可【详解】(1)是36的一个平方根,则此说法正确;(2)16的平方根是,则此说法错误;(3),则此说法正确;(4),4是有理数,则此说法错误;(5)当时,无意义,则此说
11、法错误;综上,正确的说法有2个,故选:B【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键7B【分析】根据平行线的性质,即可得出1=ADC=31,再根据等腰直角三角形ADE中,ADE=45,即可得到答案【详解】解:ABCD,1=ADC=30,又直角三角形ADE中,ADE=45,1=45-31=14,故选:B【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等8D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:由图可知:横坐标1,2,3,4依解析:D
12、【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:由图可知:横坐标1,2,3,4依次递增,则第2021个点的横坐标为2021;纵坐标2,0,1,0,2,0,1,04个一循环,20214=5051,经过第2021次运动后,P(2021,2)故选D【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键九、填空题936【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36解析:36【解析】由题意得,
13、y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题1110【分析】根据三角
14、形内角和定理求出BAC,再根据角平分线的定义求出BAD,根据直角三角形两锐角互余求出BAE,然后求解即可【详解】解:B=50,C=70,BAC=1解析:10【分析】根据三角形内角和定理求出BAC,再根据角平分线的定义求出BAD,根据直角三角形两锐角互余求出BAE,然后求解即可【详解】解:B=50,C=70,BAC=180-B-C=180-50-70=60,AD是角平分线,BAD=BAC=60=30,AE是高,BAE=90-B=90-50=40,DAE=BAE-BAD=40-30=10故答案为:10【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟
15、记定理并准确识图是解题的关键十二、填空题1240【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90D解析:40【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90DAE+CAB=180-DAC=901+2=902=90-1=40故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题1336【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由
16、折叠的性质可得:2=FED2+FED+GEC=1802=解析:36【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802= 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质十四、填空题14、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)3=17;如果三次才输出结果:则x=(17-2)3=5;解析:、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:
17、则x=(53-2)3=17;如果三次才输出结果:则x=(17-2)3=5;如果四次才输出结果:则x=(5-2)3=1;则满足条件的整数值是:53、17、5、1故答案为53、17、5、1点睛:此题的关键是要逆向思维它和一般的程序题正好是相反的十五、填空题15(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).十六、填空题16【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加
18、2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2202145051,A2021与A1是对应点,A2020与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标
19、为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程
20、【详解】(1)2x280,解得或者;(2)(x1)34,解得【解析:(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x280,解得或者;(2)(x1)34,解得【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键十九、解答题19FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出4BAF3,求出DACBAF,推出3解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线
21、平行【分析】根据平行线的性质求出4BAF3,求出DACBAF,推出3BAF,根据平行线的判定推出即可【详解】证明:AB/CD(已知) 4FAB(两直线平行,同位角相等)34(已知)3FAB(等量代换)12(已知)1CAF2CAF(等式的性质)即:FABCAD3CADAD/BE(内错角相等,两直线平行)故填:BAF,两直线平行,同位角相等,BAF,等量代换,DAC,DAC,内错角相等,两直线平行【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,反之亦然二十、解答题20(1)见解析;(2)见解析;(3)10【
22、分析】(1)根据点A、B、C的坐标描点,从而可得到ABC;(2)利用点B和B的坐标关系可判断ABC先向右平移4个单位,再向上平移2个单位得到A解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到ABC;(2)利用点B和B的坐标关系可判断ABC先向右平移4个单位,再向上平移2个单位得到ABC,利用此平移规律写出A、C的坐标,然后描点即可得到ABC;(3)用一个矩形的面积分别减去三个三角形的面积去计算ABC的面积【详解】解:(1)如图,ABC为所作;(2)如图,ABC为所作;(3)ABC的面积=【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:
23、平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查了无理数的大小解题解析:同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查了无理数的大小解题关键是确定无理数的整数部分即可解决问题二十二、解答题228;【分析】用大正方形的面积减去4个小直角三角形的面积可得
24、到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二十三、解答题23(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+A
25、PC=360解析:(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=36
26、0;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用二十四、解答题24(1)136;(2)AOG+NEF9
27、0,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF【分析】(1)如图1,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3
28、)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,CPab,AOGACP,BCP+CEF180,BCP180CEF,ACP+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF
29、上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,OPQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOPOPQ+PQF,140POQOPQ+PQF【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键二十五、解答题25(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,
30、再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=180,故可得出结论;(2)过E作EFAB,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分BAC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BAE=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABCD,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100