1、人教版七7年级下册数学期末质量检测试卷附解析一、选择题1下列说法正确的是()A4的平方根是B16的平方根是C2是的算术平方根D是36的算术平方根2下列现象属于平移的是()A投篮时的篮球运动B随风飘动的树叶在空中的运动C刹车时汽车在地面上的滑动D冷水加热过程中小气泡变成大气泡3如图,小手盖住的点的坐标可能为( )ABCD4下列六个命题有理数与数轴上的点一一对应两条直线被第三条直线所截,内错角相等平行于同一条直线的两条直线互相平行;同一平面内,垂直于同一条直线的两条直线互相平行;直线外一点到这条直线的垂线段叫做点到直线的距离如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个
2、数是()A2个B3个C4个D5个5为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知ABCD,EAB80,则E的度数是( )A30B40C60D706下列计算正确的是()A2B(3)00C(2a2b)24a4b2D2a3(2a)a37如图,将木条,与钉在一起,要使木条与平行,木条顺时针旋转的度数至少是( )ABCD8如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则
3、两个物体运动后的第2021次相遇地点的坐标是( )A(1,1)B(1,1)C(2,1)D(2,0)九、填空题9已知,则xy=_十、填空题10已知点的坐标是,且点关于轴对称的点的坐标是,则_十一、填空题11如图,四边形ABCD中,ABCD,ADBC,且BAD、ADC的角平分线AE、DF分别交BC于点E、F若EF2,AB5,则AD的长为_十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13如图,有一条直的宽纸带,按图折叠,则的度数等于_十四、填空题14定义:对任何有理数,都有,若已知=0,则=_十五、填空题15点到两坐标轴的距离相等,则_十六、填空题16如
4、图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有_个十七、解答题17(1)计算:(2)计算:(3)已知,求的值.十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19如图所示,已知1+2180,B3,请你判断DE和BC平行吗?说明理由(请根据下面的解答过程,在横线上补全过程和理由)解:DEBC理由如下:1+4180(平角的定义),1+2180( ),24( ) ( )3 ( )3B( )
5、, ( )DEBC( )二十、解答题20在下图的直角坐标系中,将平移后得到,它们的各顶点坐标如下表所示:(1)观察表中各对应点坐标的变化,并填空:向_平移_个单位长度,再向_平移_个单位长度可以得到;(2)在坐标系中画出及平移后的;(3)求出的面积二十一、解答题21实数在数轴上的对应点的位置如图所示,(1)求的值;(2)已知的小数部分是,的小数部分是,求的平方根二十二、解答题22小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你
6、认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二十三、解答题23如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间二十四、解答题24如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数
7、量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)二十五、解答题25操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中
8、,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .【参考答案】一、选择题1B解析:B【分析】根据平方根和算术平方根的定义判断即可【详解】解:A4的平方根是2,故错误,不符合题意;B的平方根是4,故正确,符合题意;C-4没有算术平方根,故错误,不符合题意;D-6是36的一个平方根,故错误,不符合题意;故选B【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断2
9、C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象故选:C【点睛】本题考查的知识点是平
10、移的概念,掌握平移的性质是解此题的关键3C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】盖住的点在第三象限,符合条件;故答案选C【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键4C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案【详解】解:实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;直线
11、外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大5A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可
12、求出答案【详解】A.原式2,故A错误;B.原式1,故B错误;C、(2a2b)24a4b2,计算正确;D、原式a2,故D错误;故选C【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型7B【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后2的同旁内角的度数,然后利用对顶角相等旋转后1的度数,继而用旋转后1减去110即可得到木条a旋转的度数【详解】解:要使木条a与b平行,旋转后12180,250,旋转后118050130,当1需变为130 ,木条a至少旋转:13011020,故选B【点睛】本题考查了旋转的性质及平行线的性质:两直线平行同位角相等;两直线平行内错角相
13、等;两直线平行同旁内角互补;夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角8A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解【详解】根据题意得:矩形的边长为4和2,物体
14、乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为,物体甲运动的路程为,物体乙运动的路程为,在A点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:A【
15、点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点九、填空题9-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1故答案为:-1【点睛】本题考查非负数的性质:几个非负数的和
16、为0时,这几个非负数都为0十、填空题10-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1解析:-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题118【分析】根
17、据题意由平行线的性质得到ADFDFC,再由DF平分ADC,得ADFCDF,则DFCFDC,然后由等腰三角形的判定得到CFCD,同理BEAB,则四边形ABCD是解析:8【分析】根据题意由平行线的性质得到ADFDFC,再由DF平分ADC,得ADFCDF,则DFCFDC,然后由等腰三角形的判定得到CFCD,同理BEAB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到ABCD,ADBC,即可得到结论【详解】解:ADBC,ADFDFC,DF平分ADC,ADFCDF,DFCCDF,CFCD,同理BEAB,ABCD,ADBC,四边形ABCD是平行四边形,ABCD,ADBC,ABBECFCD5,BC
18、BE+CFEF5+528,ADBC8,故答案为:8【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质十二、填空题1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角
19、平分线定义得出所求角与已知角的关系十三、填空题1375【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为解析:75【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为折痕,2+CBF=180,即2+30=180,解得=75故答案为:75【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键十四、填空题14【分析】先求出a,b的值,2和-3分
20、别代表新运算中的a、b,把a、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】解析:【分析】先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果解题的关键是对号入座不要找错对应关系十五、填空题15或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距
21、解析:或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值十六、填空题1660【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形,对于其中1条边,
22、除去该边的一个端点,这条边有1个整点根据正方形是中心对称图形,则四条边共有41=4个整点,第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点根据正方形是中心对称图形,则四条边共有42=8个整点,第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点根据正方形是中心对称图形,则四条边共有43=12个整点,第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点根据正方形是中心对称图形,则四条边共有44=16个整点,第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点根据正方形是中心对称图形,则四条边共有45=20个整点,.以此类推,第15
23、个正方形,四条边上的整点共有415=60个故答案为:60【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键十七、解答题17(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)
24、直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;
25、(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19已知;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已
26、知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出ABEF,根据平行线的性质得出3ADE,求出BADE,再根据平行线的判定推出即可【详解】解:DEBC,理由如下:1+4180(平角定义),1+2180(已知),24(同角的补角相等),ABEF(内错角相等,两直线平行),3ADE(两直线平行,内错角相等),3B(已知),BADE(等量代换),DEBC(同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键二十、解答题20(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标
27、变化:A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再解析:(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再向右平移4 个单位长度,即可得出图形(2)根据(1)中图象变化,得出ABC;(3)利用SABC=SABC=AByc得出即可【详解】解:(1)根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b);ABC向上平移2个单位长度,再向右平移4个单位长度可以得到ABC;(2)如图所示:(3
28、)SABC=SABC=AByc=35=7.5【点睛】此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A,B两点坐标变化得出图象平移变化位置是解题关键二十一、解答题21(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可解析:(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可求出n然后求出2m2n1,再求平方根【详解】
29、解:(1)由图知:,;(2),整数部分是3,;的整数部分是6,的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个二十二、解答题22不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得
30、(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二十三、解答题23(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作F
31、LMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,P
32、QMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移
33、至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1
34、804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键二十四、解答题24(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过
35、点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐
36、步求出角度的度数是解题的关键二十五、解答题25解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD
37、的面积,EOC的面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=1.5, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.5
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100