1、2023年人教版七7年级下册数学期末测试(及答案)(1)一、选择题125的算数平方根是AB5CD52下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )ABCD3下列各点中,位于第三象限的是( )ABCD4下列命题中是假命题的是( )A对顶角相等B两直线平行,同位角互补C在同一平面内,经过一点有且只有一条直线与已知直线垂直D平行于同一直线的两条直线平行5如图,直线,被直线所截,则的度数为( )A40B60C45D706按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )ABC2D37如图,和相交于点O,则下列结论正确的是( )ABCD8如图,在平面直角坐标系中,有
2、若干个横纵坐标分别为整数的点,其顺序为根据这个规律,第个点的坐标为( )ABCD九、填空题9的算术平方根是_十、填空题10已知点在第四象限,则点A关于y轴对称的坐标是_.十一、填空题11如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则_十二、填空题12如图,则CAD的度数为_十三、填空题13如图是长方形纸带,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是_十四、填空题14规定一种关于、的新运算:,那么_十五、填空题15已知,则_十六、填空题16在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路
3、线如图所示则点的坐标为_十七、解答题17计算:(1)|2|+(3)2;(2);(3)十八、解答题18求下列各式中的值(1)(2)十九、解答题19已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系(1)如图1,已知与中,与相交于点问:与有何关系?请完成下面的推理过程理由:,结论:与关系是 (2)如图2,已知,则与有何关系?请直接写出你的结论(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到原点的距离是_;(2)将点向轴的负方向平移个单位,则它与点_重合;(3)连接,则直
4、线与轴是什么关系?(4)点分别到、轴的距离是多少?二十一、解答题21大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_,小数部分是_.(2)如果的小数部分为,的整数部分为,求的值.(3)已知:,其中是整数,且,求的相反数.二十二、解答题22工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)二十三、解答题23已知,定点,分别在直线,上,在平行线,之间
5、有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)二十四、解答题24如图1,D是ABC延长线上的一点,CEAB(1)求证:ACDA+B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分ECD,FA平分HAD,若BAD70,求F的度数(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分QGD交AH于R,QN平分AQG交AH于N,QMGR,猜想MQN与ACB的关系,说明理由二十五、解答题25互动学习课堂上某小组同学对一个课题展
6、开了探究小亮:已知,如图三角形,点是三角形内一点,连接,试探究与,之间的关系小明:可以用三角形内角和定理去解决小丽:用外角的相关结论也能解决(1)请你在横线上补全小明的探究过程:,(_),(等式性质),(_)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:如图,在凹四边形中,求_;如图,在凹四边形中,与的角平分线交于点,则_;如图,的十等分线相交于点、,若,则的度数为_;如图,的角平分线交于点,则,与之间的数量关系是_;如图,的角平分线交于点,求的度数【参考答案】一、选择题1D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数
7、,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是1,i是一个虚数,是复数的基本单位.【详解】,25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案【详解】解:根据平移的概念,观察图形可知图案B通过平移后可以得到解析:C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案【详解】解:根据平移的概念,观察图形可知图案B通过平移后可以得到故
8、选C【点睛】本题考查生活中的平移现象,仔细观察各选项图形是解题的关键3C【分析】根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数【详解】位于第三象限的点的横坐标和纵坐标都是负数,C符合题意,故选C【点睛】本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;第三象限的点:横坐标0,纵坐标0,纵坐标04B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,故原命题是假命题;C、在同一平面内,过一点有且
9、只有一条直线与已知直线垂直,是真命题;D、平行于同一直线的两条直线互相平行,是真命题,故选:B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答6A【分析】根据计算程序图计算即可【详解】解:当x=64时,2是有理数,当x=2时,算术平方根为是无理数,y=,故选:A【点睛】此题考查计算程序的应用,正确理解计算程序图的计算
10、步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键7A【分析】根据对顶角的性质和平行线的性质判断即可【详解】解:A、和是对顶角,选项正确,符合题意;B、与OB相交于点A,与OB不平行,选项错误,不符合题意;C、AO与BC相交于点B,AO与BC不平行,选项错误,不符合题意;D、OD与BC相交于点C,OD与BC不平行,,选项错误,不符合题意故选:A【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质对顶角相等8A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律
11、,通过计算即可得到答案【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案【详解】解:根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 所以第个点的坐标为:, 第2025个数为: 第2021个数为第2025个数向上推4个数,即故选:A【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解九、填空题9【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点
12、睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键十、填空题10【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A
13、关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点关键是掌握点的坐标的变化规律十一、填空题11【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同解析:【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同理可得,故答案为:【点睛】本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键十二、填空题
14、12【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解析:【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键十三、填空题13180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:A解析:180-3【分析】由ADBC,利用平行线的性质可得出BFE和CF
15、E的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:ADBC,BFE=DEF=,CFE=180-DEF=180-,图中CFG=CFE-BFE=180-=180-2,图中CFE=CFG-BFE=180-2-=180-3故答案为:180-3【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键十四、填空题14【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.解析:【分析】根据新定义,将3与-2代入原式求解即可.【详解
16、】故答案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.十五、填空题1511【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答十六、填空题16(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而
17、得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,蚂蚁每次移动1个单位,OA4=2,OA8=4,A4(2,0),A8(4,0),OA4n=4n2=2n,点A4n的坐标为(2n,0)20204=505,点A2020的坐标是(1010,0)点A2021的坐标是(1010,1)故答案为:(1010,1)【点睛】本题考查了规律型问题在点的坐
18、标问题中的应用,数形结合并正确得出规律是解题的关键十七、解答题17(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式2+929,(2)原式(1+35) ,(3)原式334解析:(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式2+929,(2)原式(1+35) ,(3)原式334+13【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.十八、解答题18(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x
19、的方程,解之可得【详解】解:(1)即 (2)解得,解析:(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得【详解】解:(1)即 (2)解得,【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质十九、解答题19(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据解析:(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3
20、)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据,即可得与的关系;(3)由(1)(2)即可得出结论【详解】解:(1)理由:,(两直线平行,同旁内角互补), (两直线平行,同位角相等),结论:与关系是互补故答案为:;两直线平行,同旁内角互补;两直线平行,同位角相等;相等(2),理由如下:,(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理二十、解答题20(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直
21、角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)E(5,7),点E到x轴
22、的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式本题是综合题型,但难度不大二十一、解答题21(1)4, 4;(2)1;(3)12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、 的范围,求出a、b的值,再代入求解即可;(3)先估算出的范围,求出x、y的解析:(1)4, 4;(2)1;(3)12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、 的范围,求出a、b的值,再代入求解即可;(3)先估算出的范围,求出x、y的值,再代入求解即可【详解】(1)45,的整数部分是4,小数部分是
23、4,故答案为:4, 4;(2)23,a=2,34,b=3,a+b=2+3=1;(3)134,12,1110+12,10+=x+y,其中x是整数,且0y1,x=11,y=10+11=1,xy=11(1)=12,xy的相反数是12+;【点睛】此题考查估算无理数的大小,解题关键在于掌握估算方法.二十二、解答题22(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分
24、米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题二十三、解答题23(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(1)由于点是平行线,之间解析:(1)AEP+PFC=EPF;(2)AEP+EPF+PFC=360;(3)150或30;EPF+2EQF=360或EPF=2EQF【分析】(
25、1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,满足数量关系为:;(2)当点在的右侧时,满足数量关系为:;(3)若当点在的左侧时,;当点在的右侧时,可求得;结合可得,由,得出;可得,由,得出【详解】解:(1)如图1,过点作,;(2)如图2,当点在的右侧时,满足数量关系为:;过点作,;(3)如图3,若当点在的左侧时,分别平分和,;如图4,当点在的右侧时,;故答案为:或30;由可知:,;,综合以上可得与的数量关系为:或【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键二十四、解答题24(1)证明见解析
26、;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出FCDECD,HAFHAD,进而得出F(HAD+ECD),然后根据平行线的性质得出HAD+ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出, ,再通过等量代换即可得出MQNACB【详解】解:(1)CEAB,ACEA,ECDB,ACDA
27、CE+ECD,ACDA+B;(2)CF平分ECD,FA平分HAD,FCDECD,HAFHAD,FHAD+ECD(HAD+ECD),CHAB,ECDB,AHBC,B+HAB180,BAD70, F(B+HAD)55;(3)MQNACB,理由如下:平分, 平分, , MQNMQGNQG180QGRNQG180(AQG+QGD)180(180CQG+180QGC)(CQG+QGC)ACB【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键二十五、解答题25(1)三角形内角和180;等量代换;(2)见解析;(3);【分析】(1)根据三角形的内角和定理即可判断,
28、根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180;等量代换;(2)见解析;(3);【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,即可判断与,之间的关系;(3)连接BC,然后根据(1)中结论,代入已知条件即可求解;连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论
29、即可求解;设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解【详解】(1),(三角形内角和180),(等式性质),(等量代换)故答案为:三角形内角和180;等量代换(2)如图,延长交于,由三角形外角性质可知,(3)如图所示,连接BC,根据(1)中结论,得,;如图所示,连接BC,根据(1)中结论,得,与的角平分线交于点,,,;如图所示,连接BC,根据(1)中结论,得,与的十等分线交于点,,,;如图所示,设与的交点为点,平分,平分,,,即;,的角平分线交于点,【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100