1、人教版八年级上学期压轴题强化数学检测试卷(一)1如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式(1)_;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG试说明,CG与FG的数量关系2如图1,将两块全等的三角板拼在一起,其中ABC的边BC在直线l上,ACBC且AC = BC;EFP的边FP也在直线l上,边EF与边AC重合,EFFP且EF = FP
2、.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将三角板EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将三角板EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由3如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段B
3、M、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)4在中,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接当点在线段上时,若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)5如图,是等边三角
4、形,点在上,点在的延长线上,且(1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论(3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由6等腰RtABC中,BAC=90,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;(2)如图(2),当等腰RtABC运动到使点D恰为AC中点时,连接DE求证:ADB=CDE;(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角BOD和
5、等腰直角ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度7已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点(1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,求C点的坐标;(2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出;(3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,请直接写出线段AM的长8【阅读材料】小明同学发现
6、这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE【材料理解】(1)在图1中证明小明的发现【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60,其中正确的有_(将所有正确的序号填在横线上)【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,ABE=BDC=60,试探究A与BED的数量关系,并证明【
7、参考答案】2(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论(1) 解得 (2) 是等腰三角形,理由如下:由点A(
8、a,0)、点B(b,0)为x轴上两点,且可得,OA=OB OC垂直平分AB , 是等腰三角形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键3(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,见解析.【分析】(1)根
9、据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2解析:(1)AB=AP,ABAP;(2)BQ=AP,BQAP;(3)成立,见解析.【分析】(1)根据等腰直角三角形性质得出AB=AP,BAC=PAC=45,求出BAP=90即可;(2)求出CQ=CP,根据SAS证BCQACP,推出AP=BQ,CBQ=PAC,根据三角形内角和定理求出CBQ+BQC=90,推出PAC+AQG=90,求出AGQ=90即可;(3)BO与AP所满足的数量关系为相等,位置关系为垂直证明方法与(2)一样【详解】(1)AB=AP且ABAP,证明:ACBC且AC=BC,ABC为等腰直角三角形,B
10、AC=ABC=,又ABC与EFP全等,同理可证PEF=45,BAP=45+45=90,AB=AP且ABAP;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是APBQ,证明:延长BQ交AP于G,由(1)知,EPF=45,ACP=90,PQC=45=QPC,CQ=CP,ACB=ACP=90,AC=BC,在BCQ和ACP中 BCQACP(SAS),AP=BQ,CBQ=PAC,ACB=90,CBQ+BQC=90,CQB=AQG,AQG+PAC=90,AGQ=180-90=90,APBQ;(3)成立证明:如图,EPF=45,CPQ=45ACBC,CQP=CPQ,CQ=CP在RtBCQ和RtACP
11、中, RtBCQRtACP(SAS)BQ=AP;延长BQ交AP于点N,PBN=CBQRtBCQRtACP,BQC=APC在RtBCQ中,BQC+CBQ=90,APC+PBN=90PNB=90BQAP【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等也考查了等腰直角三角形的判定与性质4(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长
12、AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DC
13、B=60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,ND
14、E=BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据
15、等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由
16、易证AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=BG,故【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键6(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即
17、可解题;(2)过D作DFBC,交AB于F,证BFDDCE,推出DF=CE,证ADF是等边三角形,推出AD=DF,即可得出答案(3)如图3,过点D作DPBC,交AB的延长线于点P,证明BPDDCE,得到PD=CE,即可得到AD=CE【详解】证明:是等边三角形,为中点,,;(2)成立,如图乙,过作,交于,则是等边三角形,在和中,即如图3,过点作,交的延长线于点,是等边三角形,也是等边三角形,,,在和中,【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形7(1)A(0,1);(2)见解析;(3)不变,BP= 2【
18、分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易解析:(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGABD(ASA),即得CG=AD=CD,ADB=G,由DCE=GCE=45,可证DCEGCE(SAS)得CDE=G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点E,构建全
19、等三角形:CBEBAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPEDPB,故BP=EP=2(1)如图(1),过点C作CFy轴于点F,CFy轴于点F,CFA=90,ACF+CAF=90,CAB=90,CAF+BAO=90,ACF=BAO,在ACF和ABO中,ACFABO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作CGAC交y轴于点G,CGAC,ACG=90,CAG+AGC=90,AOD=90,ADO+DAO=90,AGC=ADO,在ACG和ABD中,ACGABD(AAS),CG=AD=CD,ADB
20、=G,ACB=45,ACG=90,DCE=GCE=45,在DCE和GCE中,DCEGCE(SAS),CDE=G,ADB=CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点EABC=90,CBE+ABO=90BAO+ABO=90,CBE=BAOCEB=AOB=90,AB=AC,CBEBAO(AAS),CE=BO,BE=AO=4BD=BO,CE=BDCEP=DBP=90,CPE=DPB,CPEDPB(AAS),BP=EP=2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形8(1)(2)整式的值不发生变化其值为(
21、3)【分析】(1)过点作于点,可以证明,由,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;解析:(1)(2)整式的值不发生变化其值为(3)【分析】(1)过点作于点,可以证明,由,再由条件就可以求出的坐标;(2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为;(3)在上截取,连接,证明,由全等三角形的性质得出由等腰三角形的性质可得出结论(1)解:如图1,过点作于点, ,等腰直角三角形,;(2)解:整式的值不会变化理由如下:如图2,过点作于点,等腰直角三角形,当点沿轴负半轴向下运动时,整式的值不变,为;(3)证明:如图3,在上截取,连接
22、,是等边三角形,为等腰直角三角形,,, ,即【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键9(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三解析:(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三角形的内角和定理判断出BOC60,再判断出BCFACO,得出A
23、OC120,进而得出AOE60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDC是等边三角形,得出BDBC,DBC60,进而判断出ABDEBC(SAS),由全等三角形的性质即可得出结论【详解】(1)证明:BACDAE,BACCADDAECAD,BADCAE,在ABD和ACE中,ABDACE(SAS);(2)解:如图2,ABC和ADE是等边三角形,ABAC,ADAE,BACDAE60,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,正确,ADBAEC,记AD与CE的交点为G,AGEDGO,180ADBDGO180AECAGE,DOEDAE60,BOC
24、60,正确,在OB上取一点F,使OFOC,连接CF,OCF是等边三角形,CFOC,OFCOCF60ACB,BCFACO,ABAC,BCFACO(SAS),AOCBFC180OFC120,AOE180AOC60,正确,连接AF,要使OCOE,则有OCCE,BDCE,CFOFBD,OFBFOD,BFCF,OBCBCF,OBCBCFOFC60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)ABED180如图3,证明:BDC60,BDCD,BDC是等边三角形,BDBC,DBC60,ABC60DBC,ABDCBE,ABBE,ABDEBC(SAS),BECA,BEDBEC180,ABED180【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100