1、2023年人教版中学七7年级下册数学期末质量检测题含解析一、选择题1如图,下列说法不正确的是( )A1与3是对顶角B2与6是同位角C3与4是内错角D3与5是同旁内角2下列现象属于平移的是()A投篮时的篮球运动B随风飘动的树叶在空中的运动C刹车时汽车在地面上的滑动D冷水加热过程中小气泡变成大气泡3在平面直角坐标系中,点P(-3,0)在( )A第二象限B第三象限Cx轴上Dy轴上4下列说法中正确的个数为( )过一点有且只有一条直线与已知直线垂直;两条直线被第三条直线所截,同位角相等;经过两点有一条直线,并且只有一条直线;在同一平面内,不重合的两条直线不是平行就是相交A个B个C个D个5如图,ABCD,
2、ADAC,BAD35,则ACD( )A35B45C55D706下列说法正确的是( )A64的平方根是8B-16的立方根是-4C只有非负数才有立方根D-3的立方根是7如图,直线ab,1=74,2=34,则3的度数是( )A75B55C40D358如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2)把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A(1,0)B(1,2)C(1,1)D(1,1)九、填空题9已知实数x,y满足+(y+1)2=0,则x-y的立
3、方根是_十、填空题10若与点关于轴对称,则的值是_;十一、填空题11如图,在平面直角坐标系中,点,三点的坐标分别是,过点作,交第一象限的角平分线于点,连接交轴于点则点的坐标为_十二、填空题12将直角三角板与两边平行的纸条如图放置,若,则_十三、填空题13将一张长方形纸条折成如图的形状,已知,则_十四、填空题14已知a,b为两个连续的整数,且,则的平方根为_十五、填空题15下列四个命题:直角坐标系中的点与有序实数对一一对应;若大于0,不小于0,则点在第三象限;过一点有且只有一条直线与已知直线平行;若,则的算术平方根是其中,是真命题的有_(写出所有真命题的序号)十六、填空题16在平面直角坐标系中,
4、若干个边长为1个单位长度的等边三角形,按如图中的规律摆放点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的的值:(1);(2)十九、解答题19如图试问、有什么关系?解:,理由如下:过点作则_( )又,_( )_( )( )即_二十、解答题20如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上(1)分别写出点A、B、C的坐标;(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A1B1C1,其中点A的对应点是A1,点B的对应点
5、是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;(3)求ABC的面积二十一、解答题21阅读下面文字:我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:由“平方与开平方互为逆运算”可知:,即,的整数部分是2,小数部分是(1)的整数部分是_,小数部分是_;(2)如果的小数部分是a,整数部分是b,求的值;(3)已知,其中x是整数,且,求二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正
6、方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?二十三、解答题23已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系二十四、解答题24如图1,E点在上,(1)求证:(2)如图2,平分,与的平分线交于H点,若比大,求的度数(3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=12
7、0求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1B解析:B【分析】根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有
8、这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可【详解】解答:解:A、1与3是对顶角,故原题说法正确,不符合题意;B、2与6不是同位角,故原题说法错误,符合题意;C、3与4是内错角,故原题说法正确,不符合题意;D、3与5是同旁内角,故原题说法正确,不符合题意;故选:B【点睛】此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义2C【分析】判断是
9、否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象故选:C【点睛】本题考查的知识点是平移的概念,掌握平
10、移的性质是解此题的关键3C【分析】根据点的坐标特点判断即可【详解】解:在平面直角坐标系中,点P(-3,0)在x轴上,故选C【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键4B【分析】根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决【详解】解:平面内,过一点有且只有一条直线与已知直线垂直,故错误;两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故错误;经过两点有一条直线,并且只有一条直线,故正确;在同一平面内,不重合的两条直线不是平行就是相交,故正确故选:B【点睛】本题考查垂线、平行线的性质,解答本题的关键是
11、明确题意题意,可以判断各个选项中的说法是否正确5C【分析】由平行线的性质可得ADCBAD35,再由垂线的定义可得ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出ACD的度数【详解】ABCD,BAD=35,ADCBAD35,ADAC,ADC+ACD90,ACD903555,故选:C【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键6D【分析】根据平方根和立方根的定义逐项判断即可得【详解】A、64的平方根是,则此项说法错误,不符题意;B、因为 ,所以的立方根不是,此项说法错误,不符题意;C、任何实
12、数都有立方根,则此项说法错误,不符题意;D、因为,所以的立方根是,此项说法正确,符合题意;故选:D【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键7C【分析】根据平行线的性质得出4=1=74,然后根据三角形外角的性质即可求得3的度数【详解】解:直线ab,1=74,4=1=74,2+3=4,3=4-2=74-34=40故选:C【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键8B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形解析:B【分析
13、】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形,长方形的周长,细线的另一端落在点上,即故选:【点睛】本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键九、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根
14、.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题101【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握
15、好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题11【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E解析:【分析】设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.【详解】解:设D(x,
16、y),点在第一象限的角平分线上,设直线AB的解析式为:,把,代入得: k=2,把代入,得b=-1,点D在上,设直线AD的解析式为:,可得, ,当x=0时,故答案为:【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.十二、填空题1236【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解【详解】,故答案为:【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键解析:36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解【详解】,故答案为:【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键十三、填空题1
17、355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题143【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平解析:3【分析】分别算出a,b计算即可;【
18、详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键十五、填空题15【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象限解析:【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象限或x轴的负半轴上;故此命题是假命题;过直线外一点有且只有一条直线与已知直线平行;故此命题是假
19、命题;若,则x=1,y=4,则的算术平方根是,正确,故此命题是真命题故答案为:【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键十六、填空题16【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1解析:【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,
20、2,3,点P的纵坐标规律:,0,0,0,0,确定P2021循环余下的点即可【详解】解:图中是边长为1个单位长度的等边三角形, A2(1,0)A4(2,0)A6(3,0)An中每6个点的纵坐标规律:,0,0,0, 点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次点P的纵坐标规律:,0,0,-,0,点P的横坐标规律: ,1,2,3,20213366+5,点P2021的纵坐标为,点P2021的横坐标为,点P2021的坐标,故答案为:【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键十七、解答题17
21、(1)5;(2)4【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案【详解】(1)原式4+25;(2)原式3()3解析:(1)5;(2)4【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案【详解】(1)原式4+25;(2)原式3()3+4【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)
22、【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键十九、解答题191;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2;两直线平行,内错角相等;等量代换;BCE【分析】过点作,则1,同理可以得到2,由此即可求解【详解】解:,解析:1;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2;两直线平行,内错角相等;等量代换;BCE【分析】过点作,则1,同理可以得到
23、2,由此即可求解【详解】解:,理由如下:过点作,则1(两直线平行,内错角相等),又,DECF(平行于同一条直线的两直线平行),2(两直线平行,内错角相等)(等量代换)即BCE,故答案为:1;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2;两直线平行,内错角相等;等量代换;BCE【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)A(3,4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(3,
24、4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC的面积【详解】解:(1)由题意得:A(3,4),B(5,2),C(2,0);(2)如图,A1B1C1为所作,A1是经过点A(-3,)右平移6个单位长度,再向下平移4个单位长度得到的,A1(-3+6,4-4)即(3,0)同理得到B1(1,2),C1(4,4);(3)ABC的面积342341225【点睛】本题主要考查了平
25、移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解二十一、解答题21(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出即可【详解】解:(1),34,的整数部分是3,小数部分是-3,故答案为:3,-3;(2),23,67,a=-
26、2,b=6,;(3)12,1112,x=11,y=,【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键二十二、解答题22(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形
27、.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E
28、作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+C
29、DE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2
30、CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十四、解答题24(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再解析:(1)见解析;(2)100;(3)不变,40【分析】(1)如图1,延长交于点,根据,可得,所以,可得,又,进而可得结论;(2)如图2,作,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等
31、式即可求的度数;(3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数【详解】解:(1)证明:如图1,延长交于点,;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在
32、B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100