1、人教版八年级上学期压轴题数学综合检测试卷带解析(一)1已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围2如图,在平面直角坐标系中,已知点,且,为轴上点右侧的动点,以为腰作等腰,使,直线交轴于点(1)求证:;(2)求证:;(3)当点运动时,点在
2、轴上的位置是否发生变化,为什么?3如图,ACB和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数(2)如图2,若ACBDCE90,CF为DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论4在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(a,0)、点 B(0, b),且 a、b 满足a2+b24a8b+20=0,点 P 在直线 AB 的右侧,且APB45(1)a ;b (2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标;(3)若点 P 不在 x 轴
3、上,是否存在点P,使ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由6已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由6如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(1)的
4、条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围7如图,在等边ABC中,ABACBC6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts(1)当t为何值时,M、N两点
5、重合;(2)当点M、N分别在AC、BA边上运动,AMN的形状会不断发生变化当t为何值时,AMN是等边三角形;当t为何值时,AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰AMN时,求t的值8已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)【参考答案】2(1);(2);(3)的值是定值,9【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAODAB,可得DBACOA90,由四边
6、形内角和定理可求解;(3)解析:(1);(2);(3)的值是定值,9【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAODAB,可得DBACOA90,由四边形内角和定理可求解;(3)由“SAS”可证ABGOBF可得OFAG,BAGBOF60,可求OAH60,可得AH6,即可求解【详解】解:(1)是方程的解解得:,检验当时,是原方程的解,点;(2)ACD,ABO是等边三角形,AOAB,ADAC,BAOCAD60,CAOBAD,且AOAB,ADAC,CAODAB(SAS)DBACOA90,ABE90,AOEABEOABBEO360,BEO120;(3)GHAF的值是定值,理由如下
7、:ABC,BFG是等边三角形,BOABAO3,FBBG,BOAABOFBG60,OBFABG,且OBAB,BFBG,ABGOBF(SAS),OFAG,BAGBOF60,AGOFOAAF3AF,OAH180OABBAG,OAH60,且AOH90,OA3,AH6,GHAFAHAGAF63AFAF9【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力3(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定
8、理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论【详解】解:(1)证明:,解得,作于点,在与中,;(2)证明:,即,在与中,;(3)点在轴上的位置不发生改变理由:设,由(2)知,为定值,长度不变,点在轴上的位置不发生改变【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键4(1)见解析;80;(2)AE2CF+BE,理由见解析【分
9、析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解
10、】(1)证明:CABCBACDECED50,ACBDCE18025080,ACBACD+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBECCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及
11、三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键5(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合AP解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合APB45,得出OPOB,可得点B的坐标;(3)分当ABP90时和当BAP90时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.【详解】
12、解:(1)a2+b24a8b+20=0,( a24a+4)+(b28b+16)0,( a2)2+(b4) 20a2,b4,故答案为:2,4;(2)如图 1,由(1)知,b4,B(0,4),OB4,点 P 在直线 AB 的右侧,且在 x 轴上,APB45,OPOB4,P(4,0),故答案为:(4,0);(3)存在理由如下:由(1)知 a2,b4,A(2,0),B(0,4),OA2,OB4,ABP 是直角三角形,且APB45,只有ABP90或BAP90,、如图 2,当ABP90时,APBBAP45,ABPB ,过点 P 作 PCOB 于 C,BPC+CBP90,CBP+ABO90 ,ABOBPC,
13、在AOB 和BCP 中, ,AOBBCP(AAS),PCOB4,BCOA2,OCOBBC2,P(4,2),、如图3,当BAP90时, 过点 P作 PDOA 于 D,同的方法得,ADPBOA,DPOA2,ADOB4,ODADOA2,P(2,2);即:满足条件的点 P(4,2)或(2,2);【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.6(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CF
14、解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB=ABE,BAC=60,EAC
15、=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG=HG,HG是两平行线之间的距
16、离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题57已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论(1)A(
17、0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,
18、AC=DC,CEACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等
19、三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题58已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围(1);(2);(3)的值是定值,9【分析】(1)先求出方程的解为,即可求解;(2)由
20、“SAS”可证CAODAB,可得DBACOA90,由四边形内角和定理可求解;(3)由“SAS”可证ABGOBF可得OFAG,BAGBOF60,可求OAH60,可得AH6,即可求解【详解】解:(1)是方程的解解得:,检验当时,是原方程的解,点;(2)ACD,ABO是等边三角形,AOAB,ADAC,BAOCAD60,CAOBAD,且AOAB,ADAC,CAODAB(SAS)DBACOA90,ABE90,AOEABEOABBEO360,BEO120;(3)GHAF的值是定值,理由如下:ABC,BFG是等边三角形,BOABAO3,FBBG,BOAABOFBG60,OBFABG,且OBAB,BFBG,A
21、BGOBF(SAS),OFAG,BAGBOF60,AGOFOAAF3AF,OAH180OABBAG,OAH60,且AOH90,OA3,AH6,GHAFAHAGAF63AFAF9【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力59等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图2(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再
22、利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.
23、60、在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明
24、FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,
25、BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题61如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,BAC=30,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE(1)如图1,若点P与点C重合,求ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直
26、接写出结果)(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60,故ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,构造含30度角的直角PCG、直角CPH以及全等三角形(RtPGBRtPHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可【详解】(1)解:如图1,点P与点C重合,CD是线段AB的垂直平分线,PA=PB,PAB=PB
27、A=30,BPE=PAB+PBA=60,PB=PE,BPE为等边三角形,CBE=60,ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,CD垂直平分AB,CA=CB,BAC=30,ACD=BCD=60,GCP=HCP=BCE=ACD=BCD=60,GPC=HPC=30,PG=PH,CG=CH=CP,CD=AC,在RtPGB和RtPHE中,RtPGBRtPHE(HL)BG=EH,即CB+CG=CE-CH,CB+CP=CE-CP,即CB+CP=CE,又CB=AC,CP=PD-CD=PD-AC,PD+AC=CE;(3)当P在C点上方时,由(2)得:PD=CE-AC
28、,当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在线段CD上时,如图3,过P作PHAE于H,连BC,作PGBC交BC于G,此时RtPGBRtPHE(HL),BG=EH,即CB-CG=CE+CH,CB-CP=CE+CP,即CP=CB-CE,又CB=AC,PD=CD-CP=AC-CB+CE,PD=CE-AC当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在D点下方时,如图4,同理,PD=AC-CE,当AC=6,CE=2时,PD=3-2=1故答案为:1【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识
29、点,难度较大,解题时,注意要分类讨论62在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,于D,交y轴于点E,求证:平分(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,
30、所以连接OF,得出OF=BFBFO=GFH,进而得出OFH=BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可【详解】解:(1) , ,即,(2)如图,过点O作于M,于N,根据题意可知,OAOB6在和中, , ,点O一定在CDB的角平分线上,即OD平分CDB(3)如图,连接OF,是等腰直角三角形且点F为AB的中点,OF平分AOB又,又,在和中 ,故不发生变化,且【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴
31、题63如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,再由全等三角形的性质的出货
32、BDOE,建立方程求解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A作AQAP,使AQAP,连
33、接OQ,BQ,PQ,则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQAPO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)75,ABPABQ+PBQ
34、30+75105【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键64如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“S
35、AS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB
36、=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT
37、+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键65(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE为BAM的角平分线,即,即可得出答案;【详解】解:(1)A
38、D平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;66如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=9
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100