1、人教版中学七年级数学下册期末解答题压轴题卷(1)一、解答题1如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由2如图是一块正方形纸片(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm(2)若一圆的面积与这个正方形的面积都是2cm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“”或“”或“”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12c
2、m2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?3(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“”或“”或“”号);(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?4如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?5如
3、图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由二、解答题6如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值7如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(
4、4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间8如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数9问题情境:如图1,ABCD,PAB130,PCD120求APC的
5、度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数10点A,C,E在直线l上,点B不在直线l上,把
6、线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)三、解答题11问题情境:如图1,ABCD,PAB=130,PCD=120,求APC的度数小明的思路是:如图2,过P作PEAB,通过平行线性质来求APC(1)按小明的思路,易求得APC的度数
7、为 度;(2)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=试判断CPD、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系12课题学习:平行线的“等角转化”功能阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求BACBC的度数(1)阅读并补充下面推理过程解:过点A作EDBC,BEAB,C 又EABBACDAC180BBACC180解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将BAC,B,C“凑”在一起,得出角之间的关系,使
8、问题得以解决方法运用:(2)如图2,已知ABED,求BBCDD的度数(提示:过点C作CFAB)深化拓展:(3)如图3,已知ABCD,点C在点D的右侧,ADC70,点B在点A的左侧,ABC60,BE平分ABC,DE平分ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求BED的度数13已知,交AC于点E,交AB于点F(1)如图1,若点D在边BC上,补全图形;求证:(2)点G是线段AC上的一点,连接FG,DG若点G是线段AE的中点,请你在图2中补全图形,判断,之间的数量关系,并证明;若点G是线段EC上的一点,请你直接写出,之间的数量关系14问题情境(1)如图1,已知,求的度数佩
9、佩同学的思路:过点作,进而,由平行线的性质来求,求得_问题迁移(2)图2图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,与相交于点,有一动点在边上运动,连接,记,如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系15如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为
10、钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系四、解答题16在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由17如图,在中,是高,是角平分线,()求、和的度数()若图形发生了变化,已知的两个角度数改为:当,则_当,时,则_当,时,则_当,时,则_()若和
11、的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论18模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)19如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论
12、.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.20如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、
13、解答题1(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可【详解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14
14、,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键2(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB21,则AB1,
15、由勾股定理,AC;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4;即C圆C正;故答案为:(3)不能;由已知设长方形长和宽为3xcm和2xcm长方形面积为:2x3x12解得x长方形长边为34他不能裁出【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.3(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(1);(2);(3)不能裁剪出,详见解析【分析】(1)根
16、据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,大正方形的边长为cm,(2),设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,450400,长方形纸片的长大于正方形的边长,不能裁出这样的长方形
17、纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查4(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的
18、方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式5不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可【详解】解:不能,因为大正方形纸片的面积为()2+()2=36(cm2),所以大
19、正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b=(取正值),所以3b=3=,所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键二、解答题6(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH
20、=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN
21、/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键7(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质
22、即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点
23、E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.5306
24、7.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,C
25、AK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键8(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角
26、的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PB
27、D=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系9(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上
28、运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFA
29、B,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键10(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)
30、当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,
31、过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型三、解答题11(1)110
32、;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求A解析:(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求APC即可;(2)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(3)画出图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【详解】解:(1)过点P作PEAB,ABCD,PEABCD,A+APE=180,C+CPE=180,PAB=
33、130,PCD=120,APE=50,CPE=60,APC=APE+CPE=110故答案为110;(2)CPD=+,理由是:如图3,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE+CPE=+;(3)当P在BA延长线时,CPD=-,理由是:如图4,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=CPE-DPE =-;当P在AB延长线时,CPD=-,理由是:如图5,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE -CPE =-【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,
34、题目是一道比较典型的题目,分类讨论是解题的关键12(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据已知条件即可得到结论;解析:(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据已知条件即可得到结论;(3)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数【详解】解:(1)过点A作EDBC,B=EAB,C=DCA,又EAB+BAC+DAC=180,B+BAC+C=180故答
35、案为:DAC;(2)过C作CFAB,ABDE,CFDE,D=FCD,CFAB,B=BCF,BCF+BCD+DCF=360,B+BCD+D=360;(3)如图3,过点E作EFAB,ABCD,ABCDEF,ABE=BEF,CDE=DEF,BE平分ABC,DE平分ADC,ABC=60,ADC=70,ABE=ABC=30,CDE=ADC=35,BED=BEF+DEF=30+35=65【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算13(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,
36、可得EDF+AFD=180,解析:(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,A+AFD=180,进而得出EDF=A;(2)过G作GHAB,依据平行线的性质,即可得到AFG+EDG=FGH+DGH=DGF;过G作GHAB,依据平行线的性质,即可得到AFG-EDG=FGH-DGH=DGF【详解】解:(1)如图,DEAB,DFAC,EDF+AFD=180,A+AFD=180,EDF=A;(2)AFG+EDG=DGF如图2所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=D
37、GH,AFG+EDG=FGH+DGH=DGF;AFG-EDG=DGF如图所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG-EDG=FGH-DGH=DGF【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等正确的作出辅助线是解题的关键14(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即解析:(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数
38、量关系;过作,依据平行线的性质可得,即可得到;(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为【详解】解:(1)如图1,过点作,则,由平行线的性质可得,又,故答案为:;(2)如图2,与,之间的数量关系为;过点P作PMFD,则PMFDCG,PMFD,1=,PMCG,2=,1+2=+,即:,如图,与,之间的数量关系为;理由:过作,;(3)如图,由可知,N=3+4,EN平分DEP,AN平分PAC,3=,4=,与,之间的数量关系为【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论15(1)见解析;(2);见解析;(3)
39、【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键四、解答题16(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100