ImageVerifierCode 换一换
格式:DOC , 页数:39 ,大小:1.04MB ,
资源ID:1886450      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1886450.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023年人教版七7年级下册数学期末解答题复习试卷含答案.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年人教版七7年级下册数学期末解答题复习试卷含答案.doc

1、2023年人教版七7年级下册数学期末解答题复习试卷含答案一、解答题1如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?2观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间3如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出

2、符合要求的桌布吗?4如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长5某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形

3、场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二、解答题6已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数7如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说

4、明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系8已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值

5、;若变化,请说明理由9已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数10综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直

6、线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,则EBC 三、解答题11(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(

7、2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t12将两块三角板按如图置,其中三角板边,(1)下列结论:正确的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)将三角板绕点顺时针转动,直到边与重合即停

8、止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数13已知:直线,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足AEDDAE点M在上,且在点B的左侧(1)如图1,若BAD25,AED50,直接写出ABM的度数 ; (2)射线AF为CAD的角平分线 如图2,当点D在点B右侧时,用等式表示EAF与ABD之间的数量关系,并证明; 当点D与点B不重合,且ABMEAF150时,直接写出EAF的度数 14已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的镜

9、像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数15已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由四、解答题16如图,

10、直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、(1)当点与点、在一直线上时,则_(2)若点与点、不在一直线上,试探索、之间的关系,并证明你的结论17如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,

11、F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值18如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角

12、平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:19已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数20已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交A

13、D于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值【参考答案】一、解答题1(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方

14、形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.2(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面

15、积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间【详解】(1)由图可知,图中阴影正方形的面积是:55=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)所以45边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算3(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)

16、设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2

17、)的关键.4(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正解析:(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等115=5,边长为,如图(1)(2)斜边长=,故点A表示的数为:;点A表示的相反数为:(3)能,如

18、图拼成的正方形的面积与原面积相等1110=10,边长为考点:1作图应用与设计作图;2图形的剪拼5(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),42

19、0=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二、解答题6(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)【分析】(1)根据

20、平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键7(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCA

21、D,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:

22、AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键8(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的

23、平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键9(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHAB

24、CD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由

25、(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线

26、是解题的关键10(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质解析:(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质即可求解【详解】解:(1)如图1,设AM与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,A

27、BDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBFCBF,DBEABE,由(2)知ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBFBFCBCF180得:233180,ABBC,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键三、解答题11(1)平行,

28、理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出

29、DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BA

30、F=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此

31、情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论12(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到

32、EAB角度所有可能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=105-30=75,BADB,BC和AD不平行,故错误;BAC+DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=

33、60,EAB=180-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEBC,则C=CAE=45,EAB=45+90=135;综上:EAB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题13(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,解析:(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的

34、等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,运用角的等量代换换算即可【详解】解:(1)设在上有一点N在点A的右侧,如图所示:,(2)证明:设,为的角平分线, 当点在点右侧时,如图:由得:又当点在点左侧,在右侧时,如图:为的角平分线,又当点和在点左侧时,设在上有一点在点的右侧如图:此时仍有,综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键14(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作Q

35、FCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系15(1)2;(2)

36、EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQ

37、NRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+

38、AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键四、解答题16(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出解析:(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出=60,计算PFD即可;(2)根据点P是动点,分三种情况讨论:当点P在AB与CD之间时;当点P在AB上方时;当点P在CD下方时,分别求出AEP、E

39、PF、CFP之间的关系即可【详解】(1)当点与点、在一直线上时,作图如下,ABCD,FHP=60,=FHP=60,EFD=180-GEP=180-60=120,PFD=120,故答案为:120;(2)满足关系式为EPF =AEP+CFP或AEP=EPF+CFP证明:根据点P是动点,分三种情况讨论:当点P在AB与CD之间时,过点P作PQAB,如下图,ABCD,PQABCD,AEP=EPQ,CFP=FPQ,EPF=EPQ+FPQ=AEP+CFP,即EPF =AEP+CFP;当点P在AB上方时,如下图所示,AEP=EPF+EQP,ABCD,CFP=EQP,AEP=EPF+CFP;当点P在CD下方时,ABCD,AEP=EQF,EQF=EPF+CFP,AEP=

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服