1、人教版七年级数学下册期末考试题(及答案)一、选择题125的算数平方根是AB5CD52四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是()ABCD3在平面直角坐标系中,点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5一副直角三角板如图放置,其中FACB90,D45,B60,AB/DC,则CAE的度数为()A25B20C15D
2、106下列说法中正确的是()A有理数和数轴上的点一一对应B0.304精确到十分位是0.30C立方根是本身的数只有0D平方根是本身的数只有07如图,把一个长方形纸条沿折叠,已知,则为( )A30B28C29D268某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,当时,表示非负实数的整数部分,例如,按此方案,第2021棵树种植点的坐标为( )ABCD九、填空题9已知 18.044,那么_十、填空题10点A(2,4)关于x轴对称的点的坐标是_十一、填空题11如图,直线与直线交于点,、是与的角平分线,则_度十二、填空题12如图,直线m与AOB的一边射线OB相交,3
3、120,向上平移直线m得到直线n,与AOB的另一边射线OA相交,则21_十三、填空题13如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若CBE45,BD6cm,则ADB1的面积为_十四、填空题14规定,例如:,通过观察,那么_十五、填空题15点到两坐标轴的距离相等,则_十六、填空题16在平面直角坐标系中,按照此规律排列下去,点的坐标为_十七、解答题17计算:(1);(2)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19
4、如图,已知:,求证:证明:(已知),_(_)(_),_(等量代换)(_)二十、解答题20在下图的直角坐标系中,将平移后得到,它们的各顶点坐标如下表所示:(1)观察表中各对应点坐标的变化,并填空:向_平移_个单位长度,再向_平移_个单位长度可以得到;(2)在坐标系中画出及平移后的;(3)求出的面积二十一、解答题21阅读下面文字,然后回答问题给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,2.6的整数部分为3,小数部分为由此我们得到一个真命题:如果,其中是整数,且
5、,那么,(1)如果,其中是整数,且,那么_,_;(2)如果,其中是整数,且,那么_,_;(3)已知,其中是整数,且,求的值;(4)在上述条件下,求的立方根二十二、解答题22如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上(1)求正方形的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标二十三、解答题23如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数二十四、解答题24如图,平分,设为,点E
6、是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)二十五、解答题25已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规
7、定0的算术平方根是0负数没有算术平方根,但i的平方是1,i是一个虚数,是复数的基本单位.【详解】,25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C【点睛
8、】本题考查了平移,掌握理解平移的概念是解题关键3A【分析】根据在各象限内,点坐标的符号规律即可得【详解】解:,在平面直角坐标系中,点所在的象限是第一象限,故选:A【点睛】本题考查了点坐标的符号规律,熟练掌握点坐标的符号规律是解题关键4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对进行判断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线
9、垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5C【分析】利用平行线的性质和给出的已知数据即可求出的度数【详解】解:,故选:C【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质6D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可【详解】解:A. 实数和数轴上的点一一对应,原说法错误;B. 0.
10、304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键7C【分析】由 AE平行BD,可得AED=ADB=32,可求BAE=122,由折叠,可得BAF=EAF,可求EAF=61即可【详解】AE/BD,AED=ADB=32,BAE=BAD+DAE=90+32=122,折叠,BAF=EAF,2EAF=BAE=122EAF=61DAF=EAF-EAD=61-32=29故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键8
11、A【分析】根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可【详解】解:由题意可知,将以上等式相加,得:,当k=20解析:A【分析】根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可【详解】解:由题意可知,将以上等式相加,得:,当k=2021时,;,将以上等式相加,得:,当k=2021时,第2021棵树种植点的坐标为,故选:A【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键九、填空题91.8044【详解】,即.故答案为1.8044解析:1.8044【详解】,即.故答案为1
12、.8044十、填空题10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律十一、填空题1160【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=E
13、OC,OC平分BOE,解析:60【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,EOC=COBAOE=EOC=COB,AOE+EOC+COB=180COB=60,AOD=COB=60,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键十二、填空题1260【分析】延长BO交直线n于点C,由平行线的性质得ACB=1,由邻补角得AOC=60,再由三角形外角的性质可得结论【详解】解:延长BO交直线n于点C,如图,直线m向上平移直解析:60【分析
14、】延长BO交直线n于点C,由平行线的性质得ACB=1,由邻补角得AOC=60,再由三角形外角的性质可得结论【详解】解:延长BO交直线n于点C,如图,直线m向上平移直线m得到直线n,mn,ACB=1,3120,AOC=602=ACO+AOC=1+60,2-1=60故答案为60【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键十三、填空题13cm【分析】根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解【详解】解:根据翻折变换的性质可知AC垂直平分BB1,B1DAC,解析:cm【分析】根据翻折变换的性
15、质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解【详解】解:根据翻折变换的性质可知AC垂直平分BB1,B1DAC,AC为三角形ADB中位线,BC=CD=BD=3cm,在RtBCE中,CBE=45,BC=3cm,CE2+BE2=BC2,解得BE=CE=cmEB1=BE=,CE为BDB1中位线,DB1=2CE=3cm,ADB1的高与EB1相等,SADB1=DB1EB1=3=cm,故答案为:cm【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为ADB的中位线从而得出答案十四、填空题14【分析】由题干得到,将原式进行整理化简即可求解.【详
16、解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.解析:【分析】由题干得到,将原式进行整理化简即可求解.【详解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距解析:或【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可【详解】解:点到两坐标轴的距离相等,或,解得,或,故答案为:或【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的
17、绝对值十六、填空题16【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐解析:【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键十七、解答题17(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原
18、式(2)原式【点解析:(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原式(2)原式【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答
19、即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得C解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得CBDE【详解】证明:ABCD,B=C(两
20、直线平行,内错角相等),B+D=180(已知),C+D=180(等量代换),CBDE(同旁内角互补,两直线平行)故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明二十、解答题20(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再解析:(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标变化:
21、A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再向右平移4 个单位长度,即可得出图形(2)根据(1)中图象变化,得出ABC;(3)利用SABC=SABC=AByc得出即可【详解】解:(1)根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b);ABC向上平移2个单位长度,再向右平移4个单位长度可以得到ABC;(2)如图所示:(3)SABC=SABC=AByc=35=7.5【点睛】此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A,B两点坐标变化得出图象平移变化位置是解题关键二十一、解答题21(1)2,;(2
22、)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,分别求得的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可【详解】(1),故答案为:2,,;(2),故答案为:3,;(3),;(4),27的立方根为3,即的立方根为3【点睛】本题考查了实数的运算,无
23、理数的估算,绝对值计算,立方根,理解题意是解题的关键二十二、解答题22(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可【详解】解:(1)正方形的面积,正方形边长为;(2)建立如图平面直角坐标系,则,【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整
24、理出直角三角形是进一步解题的关键二十三、解答题23(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(
25、1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键二十四、解答题24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度
26、数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内
27、角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键二十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性
28、质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,C
29、DE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100