1、人教版初二上册期末强化数学综合检测试题带答案一、选择题1下面有4个图案,其中轴对称图形的个数是()A1B2C3D42为了让学生拓展视野,亲近自然,三亚某学校组织八年级学生进行研学旅行活动活动中一个同学了解到某种花粉颗粒直径约为0.0000065米将数据0.0000065用科学记数法表示为()ABCD3若,则()A5B6C7D124函数=中自变量的取值范围为()A0B0C0D0且15下列各式的变形中,属于因式分解的是()ABCD6若ab,则下列分式变形正确的是()ABCD7如图,AD,要使ABCDCB,只篅再添加一个条件即可,正确的条件是()AABCDCBBACDBCABDCDBCBC8若关于x
2、的方程的解为,则a等于()AB4CD9如图:DAE=ADE=15,DEAB,DFAB,若AE=8,则DF等于()A10B7C5D410如图,已知ABC中,AB=AC, BAC=90,直角 EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:AE=CF;EPF是等腰直角三角形; 2S四边形AEPF=S ABC; BE+CF=EF当 EPF在ABC内绕顶点P旋转时(点E与A、B重合)上述结论中始终正确的有()A1个B2个C3个D4个二、填空题11若分式的值为零,则_12蝴蝶标本可以近似地看作是轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果点B的坐标是,
3、那么它关于y轴对称的点A的坐标是_13如果如果mn2,mn-4,那么 的值为_14若,则_15如图,在ABC中,AB3,AC4,BC5,EF是BC的垂直平分线,P是直线EF上的一动点,则PA+PB的最小值是 _16x2+2kx+9是一个完全平方式,则k的值为_17已知a+b2,ab24,a2+b2的值为_18在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB20 cm,AP,BQ足够长,PAAB于点A,QBAB于点B,点M从B出发向A运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,
4、在AP上取点C,使ACM与BMN全等,则AC的长度为 _ cm三、解答题19分解因式:(1)(2)20(1)解方程:(2)先化简:,再从1,0或1中选一个合适的x的值代入求值21已知:如图,C为线段BE上一点,ABDC,ABEC,BCCD求证:ACDE22某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,在ABC中,ABC与ACB的平分线交于点P,若A66,则BPC ;(2)如图2,ABC的内角ACB的平分线与ABC的外角ABD的平分线交于点E其中A,则BEC (用表示BEC);(3)如图3,BQ平分外角CBM,CQ平分外角BCN试确定BQC
5、与A的数量关系,并说明理由23某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的?(1)求每个,类摊位占地面积各为多少平方米;(2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍求最多建多少个类摊位24我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式例如由图1可以得到请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有,的式子表示) ;(3)通
6、过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”)25如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB分别交坐标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求证:点G是BN中点26【阅读材料】小明同学发现这样一个规律
7、:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE【材料理解】(1)在图1中证明小明的发现【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60,其中正确的有_(将所有正确的序号填在横线上)【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,ABE=BDC=60,试探究A与BED的数量关系,并证明【参考答案】一
8、、选择题2B解析:B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:左起第二、四两个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,第一、三两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置3C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为
9、零的数字前面的0的个数所决定【详解】解:0.00000656.5106,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4D解析:D【分析】逆用同底数幂的乘法和幂的乘方法则计算即可【详解】解:,故选:D【点睛】本题考查了同底数幂的乘法和幂的乘方的逆用,熟练掌握运算法则是解题的关键5D解析:D【分析】根据分式及二次根式有意义的条件进行计算即可【详解】解:由题可知,且,且故选:D【点睛】本题考查了函数自变量取值范围的求解,熟练掌握分式及二次根式有意义的条件是解题的关键6B解析:B【分析】根据因式分解的定义
10、:把一个多项式化为整式的积的形式,对选项进行判断【详解】解:A、从左到右的变形为整式乘法,故不符合题意B、左边为多项式,右边为整式的积,故符合题意C、左边为多项式,右边为整式的积,但等号不成立,故不符合题意D、左边、右边均为多项式,故不符合题意故选B【点睛】本题考查因式分解的定义,解决本题的关键是充分理解因式分解的定义7D解析:D【分析】根据分式的基本性质进行判断解答即可【详解】解:ab,A.,此选项错误,不符合题意;B.,此选项错误,不符合题意;C.,此选项错误,不符合题意;D.,此选项正确,符合题意故选:D【点睛】本题考查分式的基本性质,熟知分式的基本性质:分式的分子和分母同时乘或除以同一
11、个不为零的数或式子,分式的值不变,注意不是同时加或减去一个不为零的数8A解析:A【分析】根据全等三角形的判定定理分析判断即可【详解】解:由题意得知A=D,BC=CB,当ABCDCB时,可根据SAS证明ABCDCB,故A选项符合题意;当AC=DB时,根据SSA不能证明ABCDCB,故B选项不符合题意;当AB=DC时,根据ASS不能证明ABCDCB,故C选项不符合题意;当BC=BC时,只有两个条件,不能证明ABCDCB,故D选项不符合题意;故选:A【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键9D解析:D【分析】根据方程的解的定义,把x1代入原方程,原方程左右两边相等
12、,从而原方程转化为含a的新方程,解此新方程可以求得a的值【详解】解:把x1代入方程得:,解得:a故选:D【点睛】本题考查了分式方程的解,关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后再解答10D解析:D【分析】过点D作DGAC于G,先根据等角对等边求出DE=AE=8,再由三角形外角的性质求出DEC=30,即可推出DG=4,由平行线的性质得到BAC=30,可推出BAD=DAC,再由角平分线的性质即可得到答案【详解】解:如图所示,过点D作DGAC于G,DAE=ADE=15,DEG=ADE+DAE=30,AE=DE=8,DEAB,BAC=DEG=30,BAD=BAC-DAC=15,B
13、AD=DAC,又DFAB,DGAC,DF=DG=4,故选D【点睛】本题主要考查了平行线的性质,等角对等边,三角形外角的性质,含30度角的直角三角形的性质,角平分线的性质,正确作出辅助线是解题的关键11C解析:C【分析】根据等腰直角三角形的性质可得APBC,AP=PC,EAP=C=45,根据同角的余角相等求出APE=CPF,然后利用“角边角”证明APE和CPF全等,根据全等三角形的可得AE=CF,判定正确,再根据等腰直角三角形的定义得到EFP是等腰直角三角形,判定正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定错误,根据全等三角形的面积相等可得APE的面
14、积等于CPF的面积相等,然后求出四边形AEPF的面积等于ABC的面积的一半,判定正确【详解】如图,连接EF,AB=AC,BAC=90,点P是BC的中点,APBC,AP=PC,EAP=C=45,APF+CPF=90,EPF是直角,APF+APE=90,APE=CPF,;在APE和CPF中, ,APECPF(ASA),AE=CF,故正确;EFP是等腰直角三角形,故正确;根据等腰直角三角形的性质,EF=PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EFAP,故错误;APECPF,SAPE=SCPF,S四边形AEPF=SAPF+SAPE=SAPF+SCPF
15、=SAPC=SABC,2S四边形AEPF=SABC故正确,综上所述,正确的结论有共3个.故选C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出APE=CPF,从而得到APECPF是解题的关键,也是本题的突破点二、填空题12-5【分析】根据分式为0时分子为0且分母不为0即可求解【详解】解:由题意可知:且,故答案为:-5【点睛】本题考查了分式为0的条件:分子为0且分母不为013【分析】根据关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,直接求解即可【详解】解:关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,故答案为: 【点睛】题目主要考
16、查坐标系中对称点的特点,熟练掌握关于坐标轴对称的点的特点是解题关键14-3【分析】先化简分式,然后将m -n2,mn-4的值代入计算即可【详解】,m -n2,mn-4,原式=.故答案为-3.【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键15【分析】根据同底数幂除法逆运算及积的乘方逆运算解答【详解】,故答案为:【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算,正确掌握计算公式并熟练应用是解题的关键164【分析】根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4【详解】解:如图:连结BP,CP,EF垂
17、直平分BC,B、C关解析:4【分析】根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4【详解】解:如图:连结BP,CP,EF垂直平分BC,B、C关于EF对称,BP=CP,AP+BP=AP+CP,根据两点之间相等最短AP+PCAC,当点P在AC与EF交点时,AP+BP最小=AC,最小值等于AC的长为4故答案为4【点睛】本题考查轴对称最短路线问题的应用,解决此题的关键是能根据想到垂直平分线的性质和两点之间线段最短找出P点的位置173【分析】根据完全平方式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:
18、3【点睛】本题考查了完全平方式,掌握完全平方式的特点解析:3【分析】根据完全平方式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:3【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,是本题的关键要注意的是部分同学往往漏掉了k为3的情况1852【分析】根据完全平方公式变形即可求解【详解】解:a+b2,ab24,故答案为:52【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式是解题的关键解析:52【分析】根据完全平方公式变形即可求解【详解】解:a+b2,ab24,故答案为:52【点睛】本题考查了完全
19、平方公式变形求值,掌握完全平方公式是解题的关键198或15#15或8【分析】设,则,使ACM与BMN全等,由可知,分两种情况讨论:当BM=AC,BN=AM时,列方程解得t的值即可得到AC的长;当BM=AM,BN=AC时,列方程解得t的值,解析:8或15#15或8【分析】设,则,使ACM与BMN全等,由可知,分两种情况讨论:当BM=AC,BN=AM时,列方程解得t的值即可得到AC的长;当BM=AM,BN=AC时,列方程解得t的值,可解得AC的长【详解】解:设cm,则cm,要使得ACM与BMN全等,可分两种情况讨论:当BM=AC,BN=AM时,解得cm;当BM=AM,BN=AC时,解得cm故答案为
20、:8或15【点睛】本题考查全等三角形的性质,涉及分类讨论法、列一元一次方程、解一元一次方程等知识,是重要考点,掌握相关知识是解题关键三、解答题20(1)2x(x+2)(x-2);(2)(4-x+y)2【分析】(1)利用提公因式法和平方差公式分解;(2)利用完全平分公式分解(1)解:=2x2(x-4)=2x(x+2解析:(1)2x(x+2)(x-2);(2)(4-x+y)2【分析】(1)利用提公因式法和平方差公式分解;(2)利用完全平分公式分解(1)解:=2x2(x-4)=2x(x+2)(x-2)(2)=(4-x+y)2【点睛】此题考查了多项式的分解因式,正确掌握因式分解的定义及解法是解题的关键
21、21(1)x=1;(2),当x=0时,原式=1【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可(2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式解析:(1)x=1;(2),当x=0时,原式=1【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可(2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式分解,再约分,最后代入使得分式有意义的x值可求出答案【详解】解:(1)方程两边乘(x-2)得,解得x=1,检验:当x=1时x-20,所以原分式方程解为x=1;(2)原式=,由分式有意义的条件可知:x不能取1,当x=
22、0时,原式=0+1=1【点睛】本题考查分式的化简求值以及分式方程的解法,解题的关键是熟练运用分式方程的解法,分式的加减运算以及乘除运算法则,本题属于基础题型22见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC,BECD,AACD 在ABC和ECD中,ABC解析:见解析【分析】由“SAS”可证ABCECD,可得A=E=ACD【详解】证明:ABDC,BECD,AACD 在ABC和ECD中,ABCECD(SAS)AEACDE【点睛】本题考查了全等三角形的判定和性质,证明ABCECD是本题的关键23(1)122(2)(3)BQC90,理由见解析【分析】(1)根据三角
23、形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得ABDA+AC解析:(1)122(2)(3)BQC90,理由见解析【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得ABDA+ACB,再利用BECDBEBCE,即可得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC与ECB,然后再根据三角形的内角和定理列式整理即可得解(1)解:BP、CP分别平分ABC和ACB,PBCABC,PCBACB,BPC180(PBC+PCB)180(ABCACB)180(ABC+AC
24、B)180(180A)18090A90+32122故答案为:122;(2)解:CE和BE分别是ACB和ABD的角平分线,BCEACB,DBEABD,又ABD是ABC的一外角,ABDA+ACB,DBE(A+ABC)A+BCE,DBE是BEC的一外角,BECDBEBCEA+BCEBCEA;(3)解:BQC90,理由如下:根据题意得:CBM=A+ACB,BCN=A+ABC,BQ平分外角CBM,CQ平分外角BCNQBC(A+ACB),QCB(A+ABC),BQC180QBCQCB180(A+ACB)(A+ABC)180A(A+ABC+ACB)即BQC90【点睛】本题主要考查了有关角平分线的计算,三角形
25、外角的性质,三角形的内角和定理,熟练掌握三角形外角的性质,三角形的内角和定理是解题的关键24(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米(2)最多建22个类摊位【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位解析:(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米(2)最多建22个类摊位【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可;(2)设类摊位的数量为个,则类摊位的数量为个,由题意:
26、建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可(1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米(2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,所以的最大值为22答:最多建22个类摊位【点睛】本题考查了分式方程的应用以及一元一次不等式的应用解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式25(1);(2);(3)大小【分析】(1)图2面积有两种求
27、法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形解析:(1);(2);(3)大小【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一
28、定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知, (2) (3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键26(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在解析:(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO
29、= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCAE,证AFDCED,即可得出答案;(3)作EOOP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AOCF,CFAO
30、DAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90,又ABOCAG,ABAC,BADACH(ASA),ADCH,ADBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOP
31、FOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GKBOPFOPL+45,GKBOPLGPN,又KGBPGN,KBGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型27(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角
32、和三解析:(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三角形的内角和定理判断出BOC60,再判断出BCFACO,得出AOC120,进而得出AOE60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDC是等边三角形,得出BDBC,DBC60,进而判断出ABDEBC(SAS),由全等三角形的性质即可得出结论【详解】(1)证明:BACDAE,BACCADDAECAD,BADCAE,在ABD和ACE中,ABDACE(SAS);(2)解:如图2,ABC和AD
33、E是等边三角形,ABAC,ADAE,BACDAE60,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,正确,ADBAEC,记AD与CE的交点为G,AGEDGO,180ADBDGO180AECAGE,DOEDAE60,BOC60,正确,在OB上取一点F,使OFOC,连接CF,OCF是等边三角形,CFOC,OFCOCF60ACB,BCFACO,ABAC,BCFACO(SAS),AOCBFC180OFC120,AOE180AOC60,正确,连接AF,要使OCOE,则有OCCE,BDCE,CFOFBD,OFBFOD,BFCF,OBCBCF,OBCBCFOFC60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)ABED180如图3,证明:BDC60,BDCD,BDC是等边三角形,BDBC,DBC60,ABC60DBC,ABDCBE,ABBE,ABDEBC(SAS),BECA,BEDBEC180,ABED180【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100