1、人教版中学七年级下册数学期末复习题(含答案)一、选择题1如图,属于同位角的是( )A与B与C与D与2下列四幅名车标志设计中能用平移得到的是( )A奥迪B本田C奔驰D铃木3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4下列命题中,假命题是()A对顶角相等B两直线平行,内错角相等C在同一平面内,垂直于同一直线的两直线平行D过一点有且只有一条直线与已知直线平行5如图,直线,被直线所截,则的度数为( )A40B60C45D706下列运算正确的是( )ABCD7如图,中,平分,于点,则的度数为( )A134B124C114D1048在直角坐标系中,一个质点从出发沿图中路线依次经过,按
2、此规律一直运动下去,则( )A1009B1010C1011D1012九、填空题9如果一个正方形的面积为3,则这个正方形的边长是 _十、填空题10已知点P(3,1)关于y轴的对称点Q的坐标是_.十一、填空题11如图,ABC中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12如图,平分,交于,若,则的度数是_十三、填空题13如图,将一张长方形纸条折成如图的形状,若,则的度数为_十四、填空题14已知,若且是整数,则m_ 十五
3、、填空题15已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 _十六、填空题16如图,在平面直角坐标系中,动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是_十七、解答题17(1)计算:(2)计算:(3)已知,求的值.十八、解答题18求下列各式中的值:(1);(2);(3)十九、解答题19如图,四边形 ABCD 中,A = C = 90 ,BE ,DF 分别是ABC ,ADC 的平分线 试说明 BE / DF 请补充说明过程,并在括号内填上相应理由解:在四边形 ABCD 中, A +
4、 ABC + C + ADC = 360A = C = 90(已知)ABC +ADC= ,BE , DF 分别是ABC , ADC 的平分线,1 =ABC , 2= ADC ( )1+2= (ABC + ADC) 1+2= 在FCD 中, C = 90 ,DFC + 2 = 90 ( )1+2=90 (已证)1=DFC ( )BE DF ( )二十、解答题20如图,在正方形网格中,三角形的三个顶点和点都在格点上(正方形网格的交点称为格点)点,的坐标分别为,平移三角形,使点平移到点,点,分别是,的对应点(1)请画出平移后的三角形,并分别写出点E、F的坐标;(2)求的面积;(3)在轴上是否存在一点
5、,使得,若存在,请求出的坐标,若不存在,请说明理由二十一、解答题21数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1表示它的小数部分”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:的整数部分是 ;小数部分是 (2)已知8+x+y,其中x是一个整数,且0y1,求出2x+(y-)2012的值二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,
6、将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数二十四、解答题24长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间
7、查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a/秒,灯B转动的速度是b/秒,且a、b满足假定这一带长江两岸河堤是平行的,即,且(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达之前若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围二十五、解答题25解读基础:(1)图1形似燕尾,我们称之为“燕尾形
8、”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数【参考答案】一、选择题1A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可【详解】解:2与3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意1与4是对顶角,因此选项B不符合题意1与3是内错角,因此选项C不符合题意2与4同旁内角,因此选项D不符合题意故选:A【点睛】本题考查同位角、内错角、
9、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提2A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得解析:A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得到的,故的符合题意;C、不是经过平移得到的,故不符合题意;D、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在
10、于能够熟练掌握图形平移的概念.3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4D【分析】根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项【详解】解:A、对顶角相等,是真命题,故不符合题意;B、两直线平行,内错角相等,是真命题,故不符合题意;C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题
11、,故符合题意;故选D【点睛】本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答6C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次
12、根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键7B【分析】已知AE平分BAC,EDAC,根据两直线平行,同旁内角互补可知DEA的度数,再由周角为360,求得BED的度数即可【详解】解:AE平分BAC,BAE=CAE=34,EDAC,CAE+AED=180,DEA=180-34=146,BEAE,AEB=90,AEB+BED+AED=360,BED=360-146-90=124,故选:B【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键8B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5)
13、,F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可解析:B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可【详解】解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),由此可知当n为偶数时 ,可得 ,可以得到,故选B【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解九、填空题9【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平方根的定义解决此题【详解】
14、解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛解析:【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平方根的定义解决此题【详解】解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键十、填空题10(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:点Q与点P(3,1)关于y轴对称,Q(-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解
15、答.【详解】解:点Q与点P(3,1)关于y轴对称,Q(-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= D
16、C,3=B,4=5,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题1225【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1
17、=25,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,ABDE,2355,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题142【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具
18、体数值,然后根据是整数即可求出答案【详解】解:是整数,m是整数,m24,2m2,m2,1解析:2【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案【详解】解:是整数,m是整数,m24,2m2,m2,1,0,1,2当m2或1时,是整数,m=2故答案为:2【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型十五、填空题15或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:或【分析】已知,可知A
19、B=8,已知的面积为,即可求出OC长,得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解十六、填空题16【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头解析:【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现
20、各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到,可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,经过第2021次运动后,动点P的坐标为;故答案为【点睛】本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律十七、解答题17(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(
21、1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1
22、)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3= 则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键十九、解答题19见解析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判解析:见解
23、析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判定BEDF【详解】在四边形ABCD中,A+ABC+C+ADC=360A=C=90,ABC+ADC=180(四边形的内角和是360),BE,DF分别是ABC,ADC的平分线,1 =ABC , 2= ADC(角平分线定义)1+2= (ABC + ADC) 1+2=90,在FCD中,C=90,DFC+2=90(三角形的内角和是180),1+2=90(已证),1=DFC(等量代换),BEDF(同位角相等,两直线平行 )【点睛】本题主要考
24、查了平行线的判定与性质,关键是掌握三角形、四边形的内角和,以及同位角相等,两直线平行二十、解答题20(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计解析:(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计算即可;(3)根据ABC的面积得到BCM的面积,从而计算出BM,可得点M的坐标;【详解】解:(1)如图,三角形
25、DEF即为所求,点E(2,-2),F(6,-1);(2)SABC=7;(3),点C的坐标为(0,1),BM=,B(-4,0),点M的坐标为(10,0)或(-18,0)【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质二十一、解答题21(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12,的整数部分是1;小解析:(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12
26、,的整数部分是1;小数部分是-1;(2)解:12,98+10,8+x+y,且x是一个整数,0y1,x9,y8+91,2x+(y-)2012=29+(1-)2012=18+1=19【点睛】本题考查了估算无理数的大小,解决本题的关键是估算的范围二十二、解答题22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5
27、:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A
28、作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,AD
29、MN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA18
30、0(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键二十四、解答题24(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解析:(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解:(1),,;(2)设灯转动秒,两灯的光束互相平行,当时,解得;当时,
31、解得;当时,解得,(不合题意)综上所述,当t=15秒或63秒时,两灯的光束互相平行;(3)设灯转动时间为秒,又,而,即【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型二十五、解答题25(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100