1、2023年人教版中学七7年级下册数学期末复习含答案完整一、选择题1如图,下列说法正确的是( )A与是同位角B与是内错角C与是同旁内角D与是同位角2下列图案中,是通过下图平移得到的是( )ABCD3在平面直角坐标系中,点P(-3,0)在( )A第二象限B第三象限Cx轴上Dy轴上4下列命题是假命题的是()A同位角相等,两直线平行B三角形的一个外角等于与它不相邻的两个内角的和C平行于同一条直线的两条直线平行D平面内,到一个角两边距离相等的点在这个角的平分线上5如图,P为平行线之间的一点,若,CP平分ACD,则BAP的度数为( )ABCD6如果1.333,2.872,那么约等于( )A28.72B0.
2、2872C13.3D0.13337如图,直线AB,CD被BC所截,若ABCD,150,240,则3等于( )A80B70C90D1008如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,按照这样的运动规律,点第2021次运动到点( )ABCD九、填空题9如果一个正方形的面积为3,则这个正方形的边长是 _十、填空题10点关于轴的对称点的坐标是_.十一、填空题11如图,C在直线BE上,ABC与ACE的角平分线交于点,A=m,若再作、的平分线,交于点;再作、的平分线,交于点;依次类推,则为_.十二、填空题12如图,已知a/b,150,21
3、15,则3_十三、填空题13如图,在ABC中,将B、C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若A=82,则MQE= _十四、填空题14对于有理数x、y,当xy时,规定xy=yx;而当xy时,规定xy=y-x,那么4(-2)=_;如果(-1)1m=36,则m的值为_十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上向右向下向右向下向右向上向右”的方向依次不断移动,每次移动1个单位长
4、度,其移动路线如图所示,第一次移动到点,第二次移动到点,第次移动到点,则点的坐标是_十七、解答题17(1)计算:; (2)解方程组:十八、解答题18求下列各式中的:(1);(2);(3)十九、解答题19已知:如图,DBAF于点G,ECAF于点H,CD求证:AF证明:DBAF于点G,ECAF于点H(已知),DGHEHF90( )DBEC( )C ( )CD(已知),D ( )DFAC( )AF( )二十、解答题20如图,的三个顶点坐标分别为,(1)在平面直角坐标系中,画出;(2)将向下平移个单位长度,得到,并画出,并写出点的坐标二十一、解答题21计算:(1); (2)12+(2)3;(3)已知实
5、数a、b满足+|b1|=0,求a2017+b2018的值(4)已知+1的整数部分为a,1的小数部分为b,求2a+3b的值二十二、解答题22如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23已知:直线ABCD,M,N分别在直线AB,CD上,
6、H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点Q,若H140,求ENQ的度数(可直接运用中的结论)二十四、解答题24问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得_问题迁移(2)图2图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,与相交于点,有一动点在边上运动,连接,记,如图2,当点在,两点之间运动时,请直接写出与,之间的
7、数量关系;如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1B解析:B【分析】根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对
8、角叫做内错角同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案【详解】解:3与1是同位角,C与1是内错角,2与3是邻补角,B与3是同旁内角,B选项正确,故选:B【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形2C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通
9、过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键3C【分析】根据点的坐标特点判断即可【详解】解:在平面直角坐标系中,点P(-3,0)在x轴上,故选C【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键4D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项【详解】解:
10、A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大5A【分析】过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案【详解】解:如图,过P点作PMAB交AC于点MCP平分ACD,ACD68,4ACD34ABCD,
11、PMAB,PMCD,3434,APCP,APC90,2APC356,PMAB,1256,即:BAP的度数为56,故选:A【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键6C【分析】根据立方根的变化特点和给出的数据进行解答即可【详解】解:1.333,故选:C【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍7C【分析】根据ABCD判断出1=C=50,根据3是ECD的外角,判断出3=C+2,从而求出3的度数【详解】解:ABCD,1=C=50,3是ECD的外角,3=C+2,3=50+40=
12、90故选:C【点睛】本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键8A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)”,根据该规律即可得出结论【详解】解:令P点第n次运动到的点为Pn点(n为自然数)观察,发现规律:P0(0,0),P1(1,1),P2(
13、2,0),P3(3,1),P4(4,0),P5(5,1),P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)202150541,P第2021次运动到点(2021,1)故选:A【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键九、填空题9【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平方根的定义解决此题【详解】解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛解析:【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平
14、方根的定义解决此题【详解】解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键十、填空题10【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答【详解】点关于轴的对称点的坐标是,故答案为:【点睛】本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不解析:【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答【详解】点关于轴的对称点的坐标是,故答案为:【点睛】本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不变,纵坐标互为相反数十一、填空题11【分析】
15、根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当A=m时,=,以此类推,=,=,=故答案为【点睛】本题主要考查了角平分线性质解析:【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当A=m时,=,以此类推,=,=,=故答案为【点睛】本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键十二、填空题1265【分析】根据平行线的性质可得4的度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,解析:65【分析】根据平行线的性质可得4的
16、度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,3241155065故答案为:65【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键十三、填空题13【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质十四、填空题14或 【分析】根据新定义规定的式子将数值代入
17、再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=解析:或 【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=2m=36当时,原式可化为解得:;当时,原式可化为:解得:;综上所述,m的值为:或;故答案为:16;或【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键十五、填空题15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图
18、:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16(1010,1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-
19、1),A6(3,-解析:(1010,1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4202182525,的坐标为(25242,-1),点的坐标是是(1010,-1)故答案为:(1010,-1)【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1);(2).
20、【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=;(2)原方程组可化为: ,(1)2(2)得:7y7,解得:y1;把y1代入(1)得:x312,解得:x1,故方程组的解为: ;【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方
21、程的加减消元法和代入消元法是解答此题的关键十八、解答题18(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1解析:(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1),;(2),;(3),或,解得:或【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键十九、解答题19垂直的定义;同位角相
22、等,两直线平行;DBA;两直线平行,同位角相等;DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DBEC,得CDBA,再证DDB解析:垂直的定义;同位角相等,两直线平行;DBA;两直线平行,同位角相等;DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DBEC,得CDBA,再证DDBA,得DFAC,然后由平行线的性质即可得出结论【详解】解:DBAF于点G,ECAF于点H(已知),DGHEHF90(垂直的定义),DBEC(同位角相等,两直线平行),CDBA(两直线平行,同位角相等),CD(已知),DDBA(等量代换),DFAC(内错角相等,两
23、直线平行),AF(两直线平行,内错角相等)故答案为:垂直的定义;同位角相等,两直线平行;DBA,两直线平行,同位角相等;DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键二十、解答题20(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行
24、描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可【详解】解:(1)如图:ABC即为所求;(2)如图:即为所求,点A1的坐标为(-2,-1)【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键二十一、解答题21(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根
25、以及立方根的定义化简进而得出答案利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;直接利用2的范围进而得出a,b的值,即可得出答案【详解】解:;,;的整数部分为a,的小数部分为b,【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键二十二、解答题22(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正解析:(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形
26、的边长(2)求出斜边长即可(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等115=5,边长为,如图(1)(2)斜边长=,故点A表示的数为:;点A表示的相反数为:(3)能,如图拼成的正方形的面积与原面积相等1110=10,边长为考点:1作图应用与设计作图;2图形的剪拼二十三、解答题23(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)2MENMHN36
27、0;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(1)证明:过
28、点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMHGNDGNDDNH180,DNHMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)又AMHHN
29、CMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENHNHT180(两直线平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助
30、线的作法,正确作出辅助线是解题的关键,本题综合性较强二十四、解答题24(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即解析:(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即可得到;(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为【详解】解:(1)如图1,过点作,则,由平行线的性质可得,又,故答案为
31、:;(2)如图2,与,之间的数量关系为;过点P作PMFD,则PMFDCG,PMFD,1=,PMCG,2=,1+2=+,即:,如图,与,之间的数量关系为;理由:过作,;(3)如图,由可知,N=3+4,EN平分DEP,AN平分PAC,3=,4=,与,之间的数量关系为【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析
32、.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=
33、C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50
34、;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM
35、+FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100