ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:682.04KB ,
资源ID:1875612      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1875612.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(人教七年级下册数学期末复习题含解析.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教七年级下册数学期末复习题含解析.doc

1、人教七年级下册数学期末复习题含解析 一、选择题 1.9的算术平方根是() A.81 B.3 C. D.4 2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( ) A. B. C. D. 3.平面直角坐标系中有一点,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.三角形三个内角的和等于 B.对顶角相等 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.两条直线被第三条直线所截,同位角相等 5.如图,ABCD,AD⊥AC,∠BAD=35°,则∠ACD=( ) A.

2、35° B.45° C.55° D.70° 6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( ) A.3 B.4 C.5 D.6 7.在同一平面内,若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠A的度数为( ) A.20° B.55° C.20°或125° D.20°或55° 8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚

3、动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为(  ) A.(2018,1) B.(4034π+1,1) C.(2017,1) D.(4034π,1) 九、填空题 9.9的算术平方根是 . 十、填空题 10.已知点,点关于x轴对称,则的值是____. 十一、填空题 11.如图,直线与直线交于点,、是与的角平分线,则______度. 十二、填空题 12.已知a∥b,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°. 十三、填空题 13.如图1是的一张纸条,按图示方式把这一纸条先

4、沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______. 十四、填空题 14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____. 十五、填空题 15.在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是________. 十六、填空题 16.在平面直角坐标系中,对于点我们把叫做点P的伴随点,已知的伴随点为,点的伴随点为,点的伴随点为,这样依次得到,若点的坐标为,则点的坐标为_______ 十七、解答题 17.计算(每小题4分) (1) (2). (3).

5、 (4)+|﹣2 | + ( -1 )2017 十八、解答题 18.求下列各式中的值 (1) (2) 十九、解答题 19.完成下列证明过程,并在括号内填上依据. 如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD. 证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2=   (等量代换), ∴   ∥BF( ), ∴∠3=∠   ( ). 又∵∠B=∠C(已知), ∴∠3=∠B ∴AB∥CD( ). 二十、解答题 20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一

6、点,三角形经过平移后得到三角形,已知点的对应点. (1)在图中画出平移后的三角形,并写出点的坐标; (2)求三角形的面积. 二十一、解答题 21.阅读材料,解答问题: 材料:∵即,∴的整数部分为2,小数部分为. 问题:已知的立方根是3,的算术平方根是4,c是的整数部分. (1)求的小数部分.       (2)求的平方根. 二十二、解答题 22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二十三、解答题 23.如图,,点A、B分别在直线MN

7、GH上,点O在直线MN、GH之间,若,. (1)= ; (2)如图2,点C、D是、角平分线上的两点,且,求 的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值. 二十四、解答题 24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 二十五、解答题 25.(1)如图1所示

8、△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F; ①若∠B=90°则∠F=   ; ②若∠B=a,求∠F的度数(用a表示); (2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为. 【详解】 解:=3, 故选:B. 【点睛】 本题考查了算术平方根的定义,解题时注意算术平

9、方根与平方根的区别. 2.B 【分析】 根据平移变换的性质,逐一判断选项,即可得到答案. 【详解】 A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意; B. 可以经过平移变换得到,故本选项符合题意; C 解析:B 【分析】 根据平移变换的性质,逐一判断选项,即可得到答案. 【详解】 A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意; B. 可以经过平移变换得到,故本选项符合题意; C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意; D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题

10、意; 故选B. 【点睛】 本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键. 3.D 【分析】 根据平面直角坐标系内各象限内点的坐标符号特征判定即可. 【详解】 解:根据平面直角坐标系内各象限内点的坐标符号特征可知: 在第四象限 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键. 4.D 【分析】 根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可. 【详解】 解:A、三角形三个内角的和等于180°,故此说

11、法正确,是真命题; B、对顶角相等,故此说法正确,是真命题; C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题; D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题. 故选D. 【点睛】 本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解. 5.C 【分析】 由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数. 【详解】 ∵AB∥CD,∠BAD=35°, ∴∠ADC=∠BAD=35°, ∵AD⊥AC, ∴

12、∠ADC+∠ACD=90°, ∴∠ACD=90°﹣35°=55°, 故选:C. 【点睛】 本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 6.A 【分析】 根据平方根和立方根的性质,以及无理数的性质判断选项的正确性. 【详解】 解:立方根等于本身的数有:,1,0,故①正确; 平方根等于本身的数有:0,故②错误; 两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确; 是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数

13、个无理数,同样两个无理数之间有无数个有理数,故⑥正确. 故选:A. 【点睛】 本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.C 【分析】 根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数. 【详解】 解:∵两个角的两边分别平行, ∴这两个角大小相等或互补, ①这两个角大小相等,如下图所示: 由题意得,∠A=∠B,∠A=3∠B-40°, ∴∠A=∠B=20°, ②这两个角互补,如下图所示: 由题意得,,, ∴,, 综上所述,∠A的度数为20°或125°, 故选:C. 【点睛】

14、本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 8.B 【分析】 首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可. 【详解】 解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径, ∴圆心坐标(1,1 解析:B 【分析】 首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可. 【详解】 解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径, ∴圆心坐标(1,1). ∵圆向x轴正方向滚动2017圈, ∴圆沿x轴正方向平移个单位长度. ∴圆心沿x

15、轴正方向平移个单位长度. ∴平移后圆心坐标. 故选:B. 【点睛】 本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术

16、平方根的概念是解题的关键. 十、填空题 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.

17、十一、填空题 11.60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴ 解析:60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴∠EOC=∠COB ∴∠AOE=∠EOC=∠COB, ∵∠AOE+∠EOC+∠COB=180︒ ∴∠COB=60°, ∴∠AOD=∠CO

18、B=60°, 故答案为:60 【点睛】 本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键. 十二、填空题 12.60° 【分析】 如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2. 【详解】 解:如图,∵∠1=30°, ∴∠3=∠1=30°, ∵a∥b 解析:60° 【分析】 如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2. 【详解】 解:如图,∵∠1=30°, ∴∠3=∠1=30°, ∵a∥b, ∴∠4

19、∠3=30°, ∴∠5=180°-∠4-90°=60°, ∴∠2=∠5=60°. 故答案为:60°. 【点睛】 本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键. 十三、填空题 13.113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定 解析:113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x

20、−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°. 【详解】 解:如图,设∠B′FE=x, ∵纸条沿EF折叠, ∴∠BFE=∠B′FE=x,∠AEF=∠A′EF, ∴∠BFC=∠BFE﹣∠CFE=x﹣21°, ∵纸条沿BF折叠, ∴∠C′FB=∠BFC=x﹣21°, 而∠B′FE+∠BFE+∠C′FE=180°, ∴x+x+x﹣21°=180°,解得x=67°, ∵A′D′∥B′C′, ∴∠A′EF=180°﹣∠B′FE=180°﹣

21、67°=113°, ∴∠AEF=113°. 故答案为113°. 【点睛】 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题 14.﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b 解析:﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣

22、0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b. 故答案为:﹣2a﹣b. 【点睛】 此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键. 十五、填空题 15.(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】 ∵点到横轴的距离为,到纵轴的距离为, 解析:(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.

23、 【详解】 ∵点到横轴的距离为,到纵轴的距离为, ∴|y|=2,|x|=3, 由M是第二象限的点,得: x=−3,y=2. 即点M的坐标是(−3,2), 故答案为:(−3,2). 【点睛】 此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零. 十六、填空题 16.【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴A 解析: 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个

24、点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505…1, ∴的坐标与A1的坐标相同,为(3,1). 故答案是:(3,1). 【点睛】 考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 十七、解答题 17.(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算

25、计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根 解析:(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案; (4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案. 【详解】 解:(1)原式=-3+4-3 =-2 (2)原式= = (3)原式=2+(-2)+1 =

26、1 (4)原式=2+2-1 =3 【点睛】 本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2) 解得, 解析:(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2)

27、 解得, 【点睛】 本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质. 十九、解答题 19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行 【分析】 根据平行线的判定和性质解答. 【详解】 解∵∠1=∠2(已知),∠1=∠4(对顶角相等), ∴∠2= 解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行 【分析】 根据平行线的判定和性质解答. 【详解】 解∵∠1=∠2(已知),∠1=∠4(对顶角相等), ∴∠2=∠4(等量代换), ∴CE∥BF(同位角相等,两直线平

28、行), ∴∠3=∠C (两直线平行,同位角相等). 又∵∠B=∠C(已知), ∴∠3=∠B(等量代换), ∴AB∥CD(内错角相等,两直线平行). 故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行. 【点睛】 此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答. 二十、解答题 20.(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出 解析:(1)作图见解析,

29、2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位. ∵, ∴, 如图所示,三角形A′B′C′即为所求, (2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7. 【点睛】 此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 二十一、解答题 21.(1);(2). 【分析】 (1)直接利用估算无理数的大

30、小的方法分别得出答案; (2)根据平方根和立方根的定义以及(1)结论,代入解答即可. 【详解】 (1)∵即, ∴的整数部分为3,小数部分为, 解析:(1);(2). 【分析】 (1)直接利用估算无理数的大小的方法分别得出答案; (2)根据平方根和立方根的定义以及(1)结论,代入解答即可. 【详解】 (1)∵即, ∴的整数部分为3,小数部分为, ∴的小数部分为; (2)∵的立方根是3,的算术平方根是4,c是的整数部分, ∴,,, ∴,,, ∴, 的平方根是. 【点睛】 本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识

31、点,读懂题意,掌握解答顺序,正确计算即可. 二十二、解答题 22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b

32、cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二十三、解答题 23.(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠PO

33、A=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB; (2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可; (3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n. 【详解】 解:(1)如图:过O作OP//MN, ∵MN//GHl ∴MN//OP//GH ∴∠NAO+∠POA=180°,∠POB+∠OBH=180

34、° ∴∠NAO+∠AOB+∠OBH=360° ∵∠NAO=116°,∠OBH=144° ∴∠AOB=360°-116°-144°=100°; (2)分别延长AC、CD交GH于点E、F, ∵AC平分且, ∴, 又∵MN//GH, ∴; ∵, ∵BD平分, ∴, 又∵ ∴; ∴; (3)设FB交MN于K, ∵,则; ∴ ∵, ∴,, 在△FAK中,, ∴, ∴. 经检验:是原方程的根,且符合题意. 【点睛】 本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键. 二十四、解答题 2

35、4.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴

36、 ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 二十五、解答题 25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°. 【分析】 (1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC 解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°. 【分析】

37、 (1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B; (2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°. 【详解】 解:(1)①∵AD平分∠CAE,CF平分∠ACB, ∴∠CAD=∠CAE,∠ACF=∠ACB, ∵∠CAE是△ABC的外角, ∴∠B=∠CAE﹣∠

38、ACB, ∵∠CAD是△ACF的外角, ∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°, 故答案为45°; ②∵AD平分∠CAE,CF平分∠ACB, ∴∠CAD=∠CAE,∠ACF=∠ACB, ∵∠CAE是△ABC的外角, ∴∠B=∠CAE﹣∠ACB, ∵∠CAD是△ACF的外角, ∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a; (2)由(1)可得,∠F=∠ABC, ∵∠AGB与∠GAB的角平分线交于点H, ∴∠AGH=∠AGB,∠GAH=∠GAB, ∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG, ∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°, ∴∠F+∠H的值不变,是定值180°. 【点睛】 本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服