1、人教七年级下册数学期末质量监测题附答案一、选择题1如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A1与2是对顶角B1与3是同旁内角C3与4是同位角D2与3是内错角2下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3如图,小手盖住的点的坐标可能为( )ABCD4下列说法中,真命题的个数为( )两条平行线被第三条直线所截,同位角相等;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;过一点有且只有一条直线与这条直线平行;点到直线的距离是这一点到直线的垂线段;A1个B2个C3个D
2、4个5如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )ABCD6下列语句中正确的是( )A-9的平方根是-3B9的平方根是3C9的立方根是D9的算术平方根是37如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上如果115,那么2的度数是()A15B60C30D758如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45,第1次碰到长方形边上的点的坐标为第2021次碰到长方形边上的坐标为( )ABCD九、填空题9的算术平方根是_十、填空题10在平面直角坐标系中,点P(-2,3)关于直线y=x
3、-1对称的点的坐标是_十一、填空题11如图,在ABC中,ABC,ACB的角平分线相交于O点 如果A=,那么BOC的度数为_.十二、填空题12如图,把一块三角板的直角顶点放在一直尺的一边上,若150,则2的度数为_十三、填空题13如图所示是一张长方形形状的纸条,则的度数为_十四、填空题14对于有理数x、y,当xy时,规定xy=yx;而当xy时,规定xy=y-x,那么4(-2)=_;如果(-1)1m=36,则m的值为_十五、填空题15若点P在轴上,则点P的坐标为_十六、填空题16如图:在平面直角坐标系中,已知P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1),P6(2,
4、2),依次扩展下去,则点P2021的坐标为 _十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20已知:如图,把ABC向上平移4个单位长度,再向右平移3个单位长度,得到ABC,(1)画出ABC,写出A、B、C的坐标;(2)点P在y轴上,且SBCP=4SABC,直接写出点P的坐标二十一、解答题21解下列问题:(1)已知;求的值(2)已知的小数部分为的整数部分为,求的值二十二、解答题22如图,用
5、两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?二十三、解答题23已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由二十四、解答题24如图,
6、平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)二十五、解答题25如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)【参考答案】一、选择题1C解析
7、:C【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可【详解】解:A、1与2是邻补角,故原题说法错误;B、1与3不是同旁内角,故原题说法错误;C、3与4是同位角,故原题说法正确;D、2与3不是内错角,故原题说法错误;故选:C【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解
8、】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】盖住的点在第三象限,符合条件;故答案选C【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键4B【分析】根据平行线的性质与判定,点到直线的距离
9、的定义逐项分析判断即可【详解】两条平行线被第三条直线所截,同位角相等,故是真命题;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故是真命题;在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故不是真命题, 点到直线的距离是这一点到直线的垂线段的长度,故不是真命题,故真命题是,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键5D【分析】由折叠的性质可知1=BAG,2BDC+2=180,根据BEAG,得到CFB=CAG=21,从而根据平行线的性质得到CDB=21,则2=180-41.【详解】解:由题意得:A
10、GBECD,CFBD,CFB=CAG,CFB+DBF=180,DBF+CDB=180CFB=CDBCAG=CDB由折叠的性质得1=BAG,2BDC+2=180CAG=CDB=1+BAG=22=180-2BDC=180-4故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6D【分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【详解】A. 负数没有平方根,故A选项错误;B. 9的平方根是3,故B选项错误;C. 9的立方根是,故C选项错误;D. 9的算术平方根是3,正确,故选D.【点睛】本题考查了平方根、立方根、算术平方根等知识,熟练掌握
11、相关概念以及求解方法是解题的关键.7C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案【详解】解:如图所示:由题意可得:1315,则245330故选:C【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45的利用8A【分析】该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标
12、依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,202163665,第2021次碰到长方形的边的点的坐标为(7,4),故选:A【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答九、填空题9【分析】直接利用算术平方根的定义得出答案【详解】解:,的算术平方根是:故答案为:【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义得出答案【详解】解:,的算术平方根是:故答案为:【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键十、填空题
13、10【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,PAQ=90,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标【详解】解:如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,设直线y=x1交x
14、轴于点B,交y轴于点C,则点B(1,0)、点C(0,1),OB=OC=1,OBC=45,PAB=45,P、Q关于直线y=x1对称,AP=AQ,PAB=QAB=45,PAQ=90,AQx轴,P(2,3),且当y=3时,3=x1,解得x=4,A(4,3),AD=3,PA=6=AQ,DQ=3,点Q的坐标是(4,3)故答案为:(4,3)【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键十一、填空题1190+【解析】ABC、ACB的角平分线相交于点O,OBC=ABC,OCB=ACB,OBC+O
15、CB=(ABC+ACB)=(180-A)=90-A,解析:90+【解析】ABC、ACB的角平分线相交于点O,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB)=(180-A)=90-A, 在OBC中,BOC=180-OBC-OCB,BOC=180-(90-A)=90+A=90+.十二、填空题1240【分析】利用平行线的性质求出3即可解决问题【详解】解:直尺的两边互相平行,1350,2+390,290340,故答案为:40解析:40【分析】利用平行线的性质求出3即可解决问题【详解】解:直尺的两边互相平行,1350,2+390,290340,故答案为:40【点睛】本题考查了平行线的
16、性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题十三、填空题135【分析】根据平行线的性质可得3的度数,再根据邻补交的性质可得2=(180-3)2进行计算即可【详解】解:ABCD,1+3=180,1=105,3=解析:5【分析】根据平行线的性质可得3的度数,再根据邻补交的性质可得2=(180-3)2进行计算即可【详解】解:ABCD,1+3=180,1=105,3=180-105=75,2=(180-75)2=52.5,故答案为:52.5【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的十四、填空题14或 【分析】根据新定义规定的式子将数值代入再计算即可
17、;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=解析:或 【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4(-2)=;(-1)1=(-1)1m=2m=36当时,原式可化为解得:;当时,原式可化为:解得:;综上所述,m的值为:或;故答案为:16;或【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键十五、填空题15(4,0)【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】点P(m+3,m-1)在x轴上,m-1=0,解得m=1,所以
18、,m+3=1+3=4,所以,点P的坐解析:(4,0)【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】点P(m+3,m-1)在x轴上,m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐标为(4,0)故答案为:(4,0)【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键十六、填空题16(506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点
19、在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标20204,再根据第二项象限点的规律即可得出结论【详解】解:P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1),P6(2,2),下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,202145051,点P2021在第二象限,点P5(2,1),点P9(3,2),点P13(4,3),点P2021(506,505),故答案为:(506,505)【点睛】本题考查了规律型:点的坐标,是一个阅读理解
20、,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0 原式= 十八、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后
21、根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19;垂直的定义;同位角相等,两直线平行
22、;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1
23、)作图见解析,A(1,5),B(0,2),C(4,2);(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m解析:(1)作图见解析,A(1,5),B(0,2),C(4,2);(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m),构建方程解决问题即可【详解】解:(1)如图,ABC即为所求,A(1,5),B(0,2),C(4,2); (2)设P(0,m),由题意:4|m+2|=443,解得m=10或-12,P(0,10)或(0,-12)【点睛】本题考查了坐标与图形的
24、性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质二十一、解答题21(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案【详解】原式解析:(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案【详解】原式【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键二十二、解答题22(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可
25、求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)
26、35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2
27、【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的
28、判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二十四、解答题24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情
29、况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键二十五、解答题25(1)10
30、5;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100