1、2024年人教版七7年级下册数学期末质量监测试卷及答案一、选择题1的平方根是()ABCD2下列图形中,能将其中一个图形平移得到另一个图形的是 ( )ABCD3在平面直角坐标系中,点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列命题中假命题的是( )A同旁内角互补,两直线平行B如果两条直线都与第三条直线平行,那么这两条直线也互相平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直5如图,的角平分线的反向延长线和是角平分线交于点,则等于( )A42B44C72D766下列结论正确的是( )A的平方根是B没
2、有立方根C立方根等于本身的数是0D7如图,在中,交AC于点E,交BC于点F,连接DC,则的度数是( )A42B38C40D328已知点,将点作如下平移:第次将向右平移个单位,向上平移个单位得到;第次将向右平移个单位,向上平移个单位得到,第次将点向右平移个单位,向上平移个单位得到,则的坐标为( )ABCD九、填空题9若=0,则=_ .十、填空题10已知点与点关于轴对称,那么_.十一、填空题11如图,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,作PEAB于点E若PE2,则两平行线AD与BC间的距离为_十二、填空题12如图,折叠宽度相等的长方形纸条,若1=54,则2=_度十三、填
3、空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14“”定义新运算:对于任意的有理数a和b,都有例如:当m为有理数时,则等于_十五、填空题15已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为_十六、填空题16如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)(0,1)(1,1)(1,0)(2,0),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了_秒;2014秒时这个粒子所在的位置的坐标为_十七、解答题17计算下列各题:(1) (2).十八、解答题18已知:,求
4、下列各式的值:(1)的值;(2)的值十九、解答题19完成下面推理过程,并在括号中填写推理依据:如图,ADBC于点D,EGBC于点G,E3,试说明:AD平分BAC证明:ADBC,EGBCADC 90(垂直定义) EG(同位角相等,两直线平行)1 ( )23( )又3E(已知) 2 AD平分BAC 二十、解答题20如图,将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 (2)求 的面积(3)已知点 在 轴上,以 , 为顶点的三角形面积为 ,则 点的坐标为 二十一、解答题21若整数的两个平方根为,;为的整数部分(1)求及的值;
5、(2)求的立方根二十二、解答题22数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由二十三、解答题23如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋
6、转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围二十四、解答题24已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若
7、,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1C解析:C【分析】根据平方根的定义求解即可【详解】解:,36的平方根是,故选:C【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键2A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形
8、的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到;故选:A【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向掌握平移的性质是解题的关键3B【分析】根据点的横纵坐标的符号可得所在象限【详解】解:点P的横坐标是负数,纵坐标是正数,点P(-3,1)在第二象限,故选:B【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-)4
9、D【分析】根据平行线的判定定理逐项分析即可判断【详解】A. 同旁内角互补,两直线平行,是真命题,不符合题意;B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意;D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意;故选D【点睛】本题考查了真假命题的判断,掌握相关定理与性质是解题的关键5B【分析】过F作FHAB,依据平行线的性质,可设ABF=EBF=BFH,DCG=ECG=CFH,根据四边形内角和以及E-F=48,即可得到E的度数【详
10、解】解:如图,过F作FHAB,ABCD,FHABCD,DCE的角平分线CG的反向延长线和ABE的角平分线BF交于点F,可设ABF=EBF=BFH,DCG=ECG=CFH,ECF=180-,BFC=BFH-CFH=-,四边形BFCE中,E+BFC=360-(180-)=180-(-)=180-BFC,即E+2BFC=180,又E-BFC=48,E =BFC+48,由可得,BFC+48+2BFC=180,解得BFC=44,故选:B【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补6D【分析】根据平方根与立方根
11、的性质逐项判断即可得【详解】A、,8的平方根是,此项错误;B、,此项错误;C、立方根等于本身的数有,此项错误;D、,此项正确;故选:D【点睛】本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键7D【分析】由可得到与的关系,利用三角形的外角与内角的关系可得结论【详解】解:,故选:【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键8C【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移了,共向上平移解析:C
12、【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移了,共向上平移了,令,则共向右平移了:,共向上平移了,又,故,故选:C【点睛】本题考查了点的坐标规律问题,解题的关键是找到向右及向上平移的规律,再利用规律进行解答九、填空题99【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非
13、负数的性质.十、填空题100;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可【详解】解:根据对称的性质,得,解得故答案为:0【点睛】考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆十一、填空题114【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,AB
14、C的角平分线BP与BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,PEAB于点E,APBP,PNBC,PM=PE=2,PE=PN=2,MN=2+2=4故答案为4十二、填空题1272【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得【详解】解:如图,
15、长方形的两边平行,折叠,故答案为:【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题14101【分析】根据“”的定义进行运算即可求解【详解】解:= =101故答案为:101【点睛】本题考查了新定义运算,理解新定义的
16、法则是解题关键解析:101【分析】根据“”的定义进行运算即可求解【详解】解:= =101故答案为:101【点睛】本题考查了新定义运算,理解新定义的法则是解题关键十五、填空题15(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数解析:(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,又因为点P到x轴的距离为2,到y轴
17、的距离为5,所以点P的横坐标为5,纵坐标为2,所以点P的坐标为(5,2),故答案为(5,2)【点睛】此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键十六、填空题16(10,44) 【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4解析:(10,44) 【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4=20,【详解】解:
18、由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,An时所用的间分别为a1,a2,an,则a1=2,a2=6,a3=12,a4=20,a2-a1=22,a3-a2=23,a4-a3=24,an-an-1=2n,各式相加得:an-a1=2(2+3+4+n)=n2+n-2,an=n(n+1)4445=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,An中,奇数点处向下运动,偶数点处向左运动故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒所求点应为(10,44)故答案为:(10,44)故答案为:15,(10,
19、44)【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键十七、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+十八、解答题18(1)5;(2)13【分析】(1)将已知两
20、式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2)解析:(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2),=13【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键十九、解答题19;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件
21、解析:;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件3E,等量代换即可的,即可证明AD平分BAC【详解】证明:ADBC,EGBCADC90(垂直定义)EG(同位角相等,两直线平行)1(两直线平等行,同位角相等)23(两直线平行,内错角相等)又3E(已知)2(等量代换)AD平分BAC(角平分线的定义)故答案是:EGC;AD;E;两直线平等行,同位角相等;两直线平行,内错角相等;1;等量代换;角平分线定义【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线
22、的定义,掌握以上定理性质是解题的关键二十、解答题20(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点解析:(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点得坐标为 ,因为以 ,P为顶点得三角形得面积为 ,所以 ,求解即可.【详解】解:(1) 如图, 为所作(0,3),(4,0);(2) 计算 的面积 (3)设P点得坐标为(
23、t,0),因为以 , 为顶点得三角形得面积为 ,所以 ,解得 或 ,即 点坐标为 (3,0) 或(5,0)【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a值,从而得到m;(2)估算出的范围,得到b值,代入求出,从而得到的立方根【详解】解:(1)整数的两个平方根为,解析:(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a值,从而得到m;(2)估算出的范围,得到b值,代入求出,从而得到的立方根【详解】解:(1)整数的两个平方根为,解
24、得:,m=36;(2)为的整数部分,b=9,的立方根为6【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义二十二、解答题22(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积【详解
25、】解:(1)设长为3x,宽为2x,则:3x2x=30,x=(负值舍去),3x=,2x=,答:这个长方形纸片的长为,宽为;(2)正确理由如下:根据题意得:,解得:,大正方形的面积为102=100【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键二十三、解答题23(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据解析:(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线
26、的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键二十四、解答题24(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如
27、图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180
28、,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再
29、由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分
30、EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可
31、得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分
32、BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100