1、八年级上册压轴题模拟数学检测试卷带答案1已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论2等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图23在平面直角坐标系中,A(a,0),B(0,b)分别
2、是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小4如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点
3、F,交AC于点G,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由5如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜
4、想(不用证明)6以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由7阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:若,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小 (其中1); -2(其中-1)(2)已知代数式变形为,求常数的值(3)当= 时,有最小值,最小值为 (直接写出答案).8如图,在ABC中,点D为直线BC
5、上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD【参考答案】2(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y解析:(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利
6、用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,AC=DC,CEACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:
7、点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线
8、进行解题3(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在解析:(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是
9、等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.4(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想
10、办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,P
11、BPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题5(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证解析:(1
12、),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形本题综合性较强,熟练掌握等腰三
13、角形的性质,证明三角形全等是解题的关键6(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SA
14、S),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DCB=60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2
15、)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,
16、构造全等三角形解决问题7(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BFC=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE
17、,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),B
18、D=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答8(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料解析:(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料(2)可知时(即x=
19、0,)有最小值【详解】解:(1),所以;当时,由阅读材料1可得,所以;(2),所以;(3)x0,即:当时,有最小值,当x=0时,有最小值为3.【点睛】本题主要考查了分式的混合运算和配方法的应用读懂材料并加以运用是解题的关键9(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相
20、等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出结论(1)BAD=90DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB=B=45,ECB=45+45=90,即 CEBD故答案为:CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直角三角形,GAD+DAC=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=90,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100