1、人教版中学七年级数学下册期末质量监测题(含解析)一、选择题1如图,B的同位角是( )A1B2C3D42在下面的四幅图案中,能通过图案(1)平移得到的是( )ABCD3在平面直角坐标系中,点(1,3)位于( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A两个角的和等于平角时,这两个角互为补角B内错角相等C两条平行线被第三条直线所截,内错角相等D对顶角相等5如图,已知直线AB,CD被直线AC所截,ABCD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设BAE,DCE下列各式:,180,360中,AEC的度数可能是( )ABCD6下列说法正确的是( )A64
2、的平方根是8B-16的立方根是-4C只有非负数才有立方根D-3的立方根是7如图,一条“U”型水管中AB/CD,若B=75,则C应该等于( )ABCD8如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标()A(2020,0)B(2020,1)C(2021,0)D(2021,1)九、填空题9若|y+6|+(x2)2=0,则y x=_十、填空题10已知点的坐标是,且点关于轴对称的点的坐标是,则_十一、填空题11如图,已知ABC是锐角三角形,BE、CF
3、分别为ABC与ACB的角平分线,BE、CF相交于点O,若A=50,则BOC=_.十二、填空题12如图,则CAD的度数为_十三、填空题13如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为_十四、填空题14请阅读下列材料,现在规定一种新的运算:,例如:按照这种计算的规定,当,x的值为_十五、填空题15在平面直角坐标系中,若在轴上,则线段长度为_十六、填空题16如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(2,2),第四次点A3跳动至点A4(3,2),依此规律
4、跳动下去,则点A2021与点A2022之间的距离是_十七、解答题17计算:(1)|2|+2;(2)已知(x2)2=16,求x的值十八、解答题18求下列各式中的值:(1);(2)十九、解答题19补全下面的证明过程和理由:如图,AB和CD相交于点O,EFAB,CCOA,DBOD求证:AF证明:CCOA,DBOD,( )又COABOD,( )C ( )ACDF( )A ( )EFAB,F ( )AF( )二十、解答题20在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(3,1),点N的坐标为(3,2)(1)将线段MN平移得到线段AB,其中点M的对应点为A,点
5、N的对应点为B画出平移后的线段AB点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求ABC的面积二十一、解答题21已知(1)求实数的值;(2)若的整数部分为,小数部分为求的值;已知,其中是一个整数,且,求的值二十二、解答题22求下图的方格中阴影部分正方形面积与边长二十三、解答题23已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关
6、系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系二十四、解答题24已知:直线,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足AEDDAE点M在上,且在点B的左侧(1)如图1,若BAD25,AED50,直接写出ABM的度数 ; (2)射线AF为CAD的角平分线 如图2,当点D在点B右侧时,用等式表示EAF与ABD之间的数量关系,并证明; 当点D与点B不重合,且ABMEAF150时,直接写出EAF的度数 二十五、解答题25如图,在中,与的角平分线交于点.(1)
7、若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、选择题1C解析:C【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角【详解】解:B与3是DE、BC被AB所截而成的同位角,故选:C【点睛】本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形2C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移
8、得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型3C【分析】根据平面直角坐标系中象限内点的特征判断即可;【详解】,点(1,3)位于第三象限;故选C【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键4B【分析】根据内错角、对顶角、补角的定义一
9、一判断即可【详解】解:A、两个角的和等于平角时,这两个角互为补角,为真命题;B、两直线平行,内错角相等,故错误,为假命题;C、两条平行线被第三条直线所截,内错角相等,为真命题;D、对顶角相等,为真命题;故选:B【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题5C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可【详解】解:(1)如图1,由ABCD,可得AOCDCE1,AOCBAE1AE1C,AE1C(2)如图2,过E2作AB平行线,则由ABCD,可得1BAE2,2DCE2,AE2C(3)如图3
10、,由ABCD,可得BOE3DCE3,BAE3BOE3AE3C,AE3C(4)如图4,由ABCD,可得BAE4AE4CDCE4360,AE4C360综上所述,AEC的度数可能是,360故选:C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6D【分析】根据平方根和立方根的定义逐项判断即可得【详解】A、64的平方根是,则此项说法错误,不符题意;B、因为 ,所以的立方根不是,此项说法错误,不符题意;C、任何实数都有立方根,则此项说法错误,不符题意;D、因为,所以的立方根是,此项说法正确,符合题意;故选:D【点睛】本题考查了平方根和立方根,熟练掌握定
11、义是解题关键7C【分析】直接根据平行线的性质即可得出结论【详解】解:ABCD,B=75,C=180-B=180-75=105故选:C【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键8D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解
12、:由题意得:P1(1,1),P2(2,0),P3(2,0),P4(3,1)P5(5,1),P6(6,0),P7(6,0),P8(7,1),由此可以得出规律:每4次翻折为一个循环,若的余数为0,则,(n-1,1);若的余数为1,则,(n,1);若的余数为2,则,(n,0);若的余数为3,则,(n-1,0);20214=505余1,横坐标即为,(2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.九、填空题936【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36解析:36【解析】由题意得
13、,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36十、填空题10-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1解析:-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的
14、点,横坐标与纵坐标都互为相反数十一、填空题11115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB解析:115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB)= 130=65,在OBC中,BOC=180(OBC+OCB)=18065=115十二、填空题12【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线
15、的相关知识,熟练运用两直线平行内错角相等是解析:【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键十三、填空题13113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BFCx21,再由第2次折叠得到CFBBFCx21,于是利用平角定解析:113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BFCx21,再由第2次折叠得到CFBBFCx21,于是利用平角定义可计算出x67,接着根据平行线的性质得AEF180BFE1
16、13,所以AEF113【详解】解:如图,设BFEx,纸条沿EF折叠,BFEBFEx,AEFAEF,BFCBFECFEx21,纸条沿BF折叠,CFBBFCx21,而BFE+BFE+CFE180,x+x+x21180,解得x67,ADBC,AEF180BFE18067113,AEF113故答案为113【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等解决本题的关键是画出折叠前后得图形十四、填空题14【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此
17、题考查了解一元一次方程,解题的关键是掌握其步骤解析:【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解十五、填空题155【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长度为,故答案为:5【点睛】本题只要考查解析:5【分析】先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案【详解】在轴上,横坐标为0,即,解得:,故,线段长
18、度为,故答案为:5【点睛】本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数十六、填空题162023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离【详解】解:观察发
19、现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011)点A2021与点A2022的纵坐标相等,点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键十七、解答题17(1)原式=;(2)x=-2或x=6.【分析】
20、(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.十八、解答题18(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析
21、】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键十九、解答题19见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),解析:见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=
22、COA,D=BOD(已知),又COA=BOD(对顶角相等),C=D(等量代换)ACDF(内错角相等,两直线平行)A=ABD(两直线平行,内错角相等)EFAB,F=ABD(两直线平行,内错角相等)A=F(等量代换)故答案为:已知,对顶角相等;D,等量代换;内错角相等,两直线平行;ABD,两直线平行,内错角相等;ABD,两直线平行,同位角相等,等量代换【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键二十、解答题20(1)右,3,上,5(答案不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利
23、用割补法,得到即可求解【详解析:(1)右,3,上,5(答案不唯一);(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解【详解】解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;N(3,-2),将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)点B的坐标为(6,3);(2)如图,过点B作BEx轴于点E,过点A作ADy轴交EB的延长线于点D,则四边形AOED是矩形,A (
24、0,4),B (6, 3), C(4,0)E (6,0), D (6,4) AO= 4, CO= 4, EO=6, CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1, 【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键二十一、解答题21(1);(2);【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入解析:(1);(2);【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”
25、型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入即可求值;估算的大小,再根据是一个整数,且,可得k和m的值,由此可得的值【详解】解:(1),且,且,即;(2),即的整数部分为4,小数部分为,;,又,是一个整数,且,【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键二十二、解答题228;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8
26、的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二十三、解答题23(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可解析:(1)18;2BEG+HFG=90,证明见解
27、析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-
28、HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十四、解答题24(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,解析:(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表
29、示出对比即可;分类讨论点在的左右两侧的情况,运用角的等量代换换算即可【详解】解:(1)设在上有一点N在点A的右侧,如图所示:,(2)证明:设,为的角平分线, 当点在点右侧时,如图:由得:又当点在点左侧,在右侧时,如图:为的角平分线,又当点和在点左侧时,设在上有一点在点的右侧如图:此时仍有,综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键二十五、解答题25(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据B
30、O、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100