1、八年级上学期压轴题强化数学综合试题带答案 1.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点. (1)求点的坐标; (2)求证:; (3)如图2,点在线段上,作轴于点,交于点,若,求证:. 2.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:____________________________
2、 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 3.如图,在平面直角坐标系中,已知点,,且,为轴上点右侧的动点,以为腰
3、作等腰,使,,直线交轴于点. (1)求证:; (2)求证:; (3)当点运动时,点在轴上的位置是否发生变化,为什么? 4.在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(–a,0)、点 B(0, b),且 a、b 满足a2+b2–4a–8b+20=0,点 P 在直线 AB 的右侧,且∠APB=45°. (1)a= ;b= . (2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标; (3)若点 P 不在 x 轴上,是否存在点P,使△ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由.
4、 5.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 6.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒. (1)求的值; (2)当为何值时, (3)如图2,在第一象限存在点,使,求. 7.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定
5、次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”. (1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号);
6、 (2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积; (3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC; ②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:. 【参考答案】 2.(1);(2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直 解析:(1)
7、2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论; (3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论. 【详解】解:(1)∵a2-2ab+2b2-16b+64=0, ∴(a-b)2+(b-8)2=0, ∴a=b=8, ∴b-6=2, ∴点C(2,
8、8); (2)∵a=b=8, ∴点A(0,6),点B(8,0),点C(2,-8), ∴AO=6,OB=8, 如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q, ∴四边形AOBP是矩形, ∴AO=BP=6,AP=OB=8, ∵点B(8,0),点C(2-8), ∴CQ=6,BQ=8, ∴AP=BQ,CQ=BP, 又∠APB=∠BCQ ∴△ABP≌△BCQ(SAS), ∴AB=BC,∠BAP=∠CBQ, ∵∠BAP+∠ABP=90°, ∴∠ABP+∠CBQ=90°, ∴∠ABC=90°, ∴△ABC是等腰直角三角形,
9、 ∴∠BAC=45°, ∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°, ∴∠OAC+∠ABO=45°; (3)如图2,过点A作AT⊥AB,交x轴于T,连接ED, ∴∠TAE=90°=∠AGE, ∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG, ∴∠ATO=∠GAE,∠TAO=∠AEG, 又∵EG=AO, ∴△ATO≌△EAG(AAS), ∴AT=AE,OT=AG, ∵∠BAC=45°, ∴∠TAD=∠EAD=45°, 又∵AD=AD, ∴△TAD≌△EAD(SAS), ∴TD=ED,∠TDA=∠EDA, ∵EG⊥AG,
10、∴EG∥OB, ∴∠EFD=∠TDA, ∴∠EFD=∠EDF, ∴EF=ED, ∴EF=ED=TD=OT+OD=AG+OD, ∴EF=AG+OD. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键. 3.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务
11、二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD
12、 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 4.(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根
13、据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; 解析:(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; (3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论. 【详解】解:(1)证明:, ,解得, ,, 作于点, ,, ,, 在与中, , , ; (2)证明:, ,即, 在与中, , ; (3)点在轴上的位置不发生改变. 理由:设, 由(2)知,, ,
14、 ,为定值,, 长度不变, 点在轴上的位置不发生改变. 【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键. 5.(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠AP 解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2). 【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值; (2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点
15、B的坐标; (3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标. 【详解】解:(1)∵a2+b2–4a–8b+20=0, ∴( a2–4a+4)+(b2–8b+16)=0, ∴( a–2)2+(b–4) 2=0 ∴a=2,b=4, 故答案为:2,4; (2)如图 1,由(1)知,b=4, ∴B(0,4), ∴OB=4, 点 P 在直线 AB 的右侧,且在 x 轴上, ∵∠APB=45°, ∴OP=OB=4, ∴P(4,0), 故答案为:(4,0); (3)存在.理由如下: 由(1)知 a=﹣2,b=
16、4, ∴A(﹣2,0),B(0,4), ∴OA=2,OB=4, ∵△ABP 是直角三角形,且∠APB=45°, ∴只有∠ABP=90°或∠BAP=90°, Ⅰ、如图 2,当∠ABP=90°时, ∵∠APB=∠BAP=45°, ∴AB=PB , 过点 P 作 PC⊥OB 于 C, ∴∠BPC+∠CBP=90°, ∵∠CBP+∠ABO=90 °, ∴∠ABO=∠BPC, 在△AOB 和△BCP 中, , ∴△AOB≌△BCP(AAS), ∴PC=OB=4,BC=OA=2, ∴OC=OB﹣BC=2, ∴P(4,2),Ⅱ、如图3,当∠BAP=90°时,
17、过点 P'作 P'D⊥OA 于 D, 同Ⅰ的方法得,△ADP'≌△BOA, ∴DP'=OA=2,AD=OB=4, ∴OD=AD﹣OA=2, ∴P'(2,﹣2); 即:满足条件的点 P(4,2)或(2,﹣2); 【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论. 6.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;
18、2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接D
19、K, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 7.(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) ( 解析:(
20、1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) (2)当动点沿轴正方向运动时,如解图-2-1: 当动点沿轴负方向运动时,如解图-2-2: (3)过作,连 在与 ∴, 在与中 ∴,, ∴,, ∴是等边三角形, ∴, 又∵ ∴ ∵ ∴ 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加
21、恰当辅助线构造三角形是本题的关键. 8.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
22、1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键. 9.(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四
23、边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则, 解析:(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可; (3)记面积为,则,,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论. (1) 根据菱形于正方形的定义值,一定是菠菜四边形的
24、是菱形与正方形, 故答案为:③④ (2) 如图,过A作,交CB的延长线于F, ∴ 四边形AFCE是矩形 则 四边形AFCE是正方形, 即四边形ABCD的面积为16 (3) ①记, ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ 如图:作, ∴ ∴ AMAD ∴四边形AMND为平行四边形 ∴ADMN ∴ADBC ②∵ADBC ∴ 又∵AD=AB ∴ ∴ ∴BD平分 如图: ∵ ∴ ∴ 又∵ ∴ ∴ 【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818