1、初二上册压轴题强化数学综合检测试卷带答案 2.已知△ABC是等边三角形,△ADE的顶点D在边BC上 (1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数; (2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF; (3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由. 2.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D.
2、 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接
3、写出结论 . 3.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP. (1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系; (2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想; (3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关
4、系还成立吗?若成立,给出证明;若不成立,请说明理由. 4.已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 5.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于
5、轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 6.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点. (1)若+b2-10b+25=0,判断△AOB的形状,并说明理由; (2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,
6、过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长; (3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围. 7.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点. (1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标; (2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半
7、轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出; (3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长. 8.如图1,在平面直角坐标系中,,,且∠ACB=90°,AC=BC. (1)求点B的坐标; (2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由; (3)如图3,若在点B处有一个等腰Rt△BDG,且BD=DG,∠BDG=90°,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关
8、系,并证明你的结论. 【参考答案】 2.(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CF 解析:(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证; (3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形
9、然后证明△EGF≌△EHA,结合HG是定值,即可得到答案. 【详解】解:(1)根据题意, ∵AD=DE,∠AED=60°, ∴△ADE是等边三角形, ∴AD=AE,∠DAE=60°, ∵AB=AC,∠BAC=60°, ∴, 即, ∴△BAD≌△CAE, ∴∠ACE=∠B=60°; (2)连CF,如图: ∵AB=AC=AE, ∴∠AEB=∠ABE, ∵∠BAC=60°,∠EAC=90°, ∴∠BAE=150°, ∴∠AEB=∠ABE=15°; ∵△ACE是等腰直角三角形, ∴∠AEC=45°, ∴∠BEC=30°,∠EBC=45°, ∵AD垂直平分BC
10、点F在AD上, ∴CF=BF, ∴∠FCB=∠EBC=45°, ∴∠CFE=90°, 在直角△CEF中,∠CFE=90°,∠CEF=30°, ∴CE=2CF=2BF; (3)延长AE至F,使EF=AE,连DF、CF,如图: ∵∠AED=90°,EF=AE, ∴DE是中线,也是高, ∴△ADF是等腰三角形, ∵∠ADE=30°, ∴∠DAE=60°, ∴△ADF是等边三角形; 由(1)同理可求∠ACF=∠ABC=60°, ∴∠ACF=∠BAC=60°, ∴CF∥AB, 过E作EG⊥CF于G,延长GE交BA的延长线于点H, 易证△EGF≌△EHA, ∴EH
11、EG=HG, ∵HG是两平行线之间的距离,是定值, ∴S△ABE=S△ABC=; 【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题. 3.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析
12、1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-
13、∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+
14、∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB,
15、即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=
16、[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 4.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2 解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥
17、AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可; (3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样. 【详解】(1)AB=AP且AB⊥AP, 证明:∵AC⊥BC且AC=BC, ∴△ABC为等腰直角三角形, ∴∠BAC=∠ABC=, 又∵△ABC与△EFP全等, 同理
18、可证∠PEF=45°, ∴∠BAP=45°+45°=90°, ∴AB=AP且AB⊥AP; (2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ, 证明:延长BQ交AP于G, 由(1)知,∠EPF=45°,∠ACP=90°, ∴∠PQC=45°=∠QPC, ∴CQ=CP, ∵∠ACB=∠ACP=90°,AC=BC, ∴在△BCQ和△ACP中 ∴△BCQ≌△ACP(SAS), ∴AP=BQ,∠CBQ=∠PAC, ∵∠ACB=90°, ∴∠CBQ+∠BQC=90°, ∵∠CQB=∠AQG, ∴∠AQG+∠PAC=90°, ∴∠AGQ=180°-90
19、°=90°, ∴AP⊥BQ; (3)成立. 证明:如图,∵∠EPF=45°, ∴∠CPQ=45°. ∵AC⊥BC, ∴∠CQP=∠CPQ, CQ=CP. 在Rt△BCQ和Rt△ACP中, ∴Rt△BCQ≌Rt△ACP(SAS) ∴BQ=AP; 延长BQ交AP于点N, ∴∠PBN=∠CBQ. ∵Rt△BCQ≌Rt△ACP, ∴∠BQC=∠APC. 在Rt△BCQ中,∠BQC+∠CBQ=90°, ∴∠APC+∠PBN=90°. ∴∠PNB=90°. ∴BQ⊥AP. 【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这
20、两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质. 5.(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明 解析:(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图,
21、 ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明. 6.(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,
22、根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点 解析:(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°. (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中, 即可得解. 【详解】解:(1)由已知条件得: AC=12,OB=6
23、 ∴ (2)过E作EF⊥x轴于点F,延长EA交y轴于点H, ∵△BDE是等腰直角三角形, ∴DE=DB, ∠BDE=90°, ∴ ∵ ∴ ∴ ∵EF轴, ∴ ∴DF=BO=AO,EF=OD ∴AF=EF ∴ ∴∠BAE=90° (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长, ∵,OA=6, ∴OM+ON=3 【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键. 7.(1)
24、△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2) 解析:(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度; (3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用A
25、AS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长. (1) 解:结论:△OAB是等腰直角三角形;理由如下: ∵+b2-10b+25=0,即, ∴,解得:, ∴A(−5,0),B(0,5), ∴OA=OB=5, ∴△AOB是等腰直角三角形. (2) 解:∵AM⊥OQ,BN⊥OQ, ∴, , ∴, ∴, ∵在△AMO与△ONB中, ∴△AMO≌△ONB(AAS), ∴AM=ON=4,BN=OM, ∵MN=7, ∴OM=3, ∴BN=OM=3. (3) 解:结论:PB的长为定值.理由如下, 作EK⊥y轴于K点,如图所示: ∵△ABE为
26、等腰直角三角形, ∴AB=BE,∠ABE=90°, ∴∠EBK+∠ABO=90°, ∵∠EBK+∠BEK=90°, ∴∠ABO=∠BEK, ∵在△AOB和△BKE中, ∴△AOB≌△BKE(AAS), ∴OA=BK,EK=OB, ∵△OBF为等腰直角三角形, ∴OB=BF, ∴EK=BF, ∵在△EKP和△FBP中, ∴△PBF≌△PKE(AAS), ∴PK=PB, ∴PB=BK=OA=. 【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键. 8.(1) (2)整式的
27、值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; 解析:(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; (3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论. (1) 解:如图1,过点作于点, , 等腰直角三角形, ,, . , ,. ,, ,, , ; (2
28、) 解:整式的值不会变化. 理由如下: 如图2,过点作于点, , 等腰直角三角形, ,, , , , , , , , 当点沿轴负半轴向下运动时, , 整式的值不变,为; (3) . 证明:如图3,在上截取,连接, 是等边三角形, ,, 为等腰直角三角形, ,, , , , ,, , , . , ,, , , , , , , 即. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键. 9.(1) (2
29、见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT= 解析:(1) (2),见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT=BH=2,可得结论; (2)结论:MN=ME+NF.证明△BFN≌△BEK(SAS),推出BN=BK,∠FBN=∠EBK,再证明△BMN≌△BMK(SAS),推出MN=MK,可得结论; (3)结论:DH=
30、CH,DH⊥CH.如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M.证明△JDC是等腰直角三角形,可得结论. 【详解】解:(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H. ∵A(0,4),C(﹣2,﹣2), ∴OA=4,OT=CT=2, ∴AT=4+2=6, ∵∠ACB=∠ATC=∠H=90°, ∴∠CAT+∠ACT=90°,∠BCH+∠CBH=90°, ∴∠CAT=∠BCH, ∵CA=CB, ∴△ATC≌△CHB(AAS), ∴AT=CH=6,CT=BH=2, ∴TH=CH﹣CT=4, ∴B(4,-4)
31、 (2)结论:MN=ME+NF. 理由:在射线OE上截取EK=FN,连接BK. ∵B(4,4),BE⊥y轴,BF⊥x轴, ∴BE=BF=4,∠BEO=∠BFO=∠EOF=90°, ∴四边形BEOF是矩形, ∴∠EBF=90°, ∵EK=FN,∠BFN=∠BEK=90°, ∴△BFN≌△BEK(SAS), ∴BN=BK,∠FBN=∠EBK, ∴∠NBK=∠FBE=90°, ∵∠MBN=45°, ∴∠MBN=∠BMK=45°, ∵BM=BM, ∴△BMN≌△BMK(SAS), ∴MN=MK, ∵MK=ME+EK, ∴MN=EM+FN; (3)结论:DH=C
32、H,DH⊥CH. 理由:如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M. ∵AH=HG,∠AHJ=∠GHD,HJ=HD, ∴△AHJ≌△GHD(SAS), ∴AJ=DG,∠AJH=∠DGH, ∴AJ∥DM, ∴∠JAC=∠AMD, ∵DG=BD, ∴AJ=BD, ∵∠MCB=∠BDM=90°, ∴∠CBD+∠CMD=180°, ∵∠AMD+∠CMD=180°, ∴∠AMD=∠CBD, ∴∠CAJ=∠CBD, ∵CA=CB, ∴△CAJ≌△CBD(SAS), ∴CJ=CD,∠ACJ=∠BCD, ∴∠JCD=∠ACB=90°, ∵JH=HD, ∴CH⊥DJ,CH=JH=HD, 即CH=DH,CH⊥DH. 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818