1、高中物理0种电磁学仪器1、 电视机原理 、电视机得显像管中,电子束得偏转就就是用磁偏转技术实现得、电子束经过电压为U得加速电场后,进入一圆形匀强磁场区,如图所示、磁场方向垂直于圆面、磁场区得中心为O,半径为r、当不加磁场时,电子束将通过O点而打到屏幕得中心M点、为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度,此时磁场得磁感应强度B应为多少?解析:如图所示,电子在磁场中沿圆弧ab运动,圆心为O,半径为,以v表示电子进入磁=场时得速度,、e分别表示电子得质量与电荷量,则 又有 由以上各式解得:、电磁流量计、电磁流量计广泛应用于测量可导电液体(如污水)在管中得流量(在单位时间内通过管
2、内横截面得流体得体积)、为了简化,假设流量计就就是如图所示得横截面为长方形得一段管道、其中空部分得长、宽、高分别为图中得a、c、流量计得两端与输送流体得管道相连接(图中虚线)、图中流量计得上下两面就就是金属材料,前后两面就就是绝缘材料、现于流量计所在处加磁感应强度B得匀强磁场,磁场方向垂直前后两面、当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻得电流表得两端连接,I表示测得得电流值、已知流体得电阻率为,不计电流表得内阻,则可求得流量为( ) A、 B、 C、 D、3、质谱仪3、如图就就是测量带电粒子质量得仪器工作原理示意图。设法使某有机化合物得气态分子导入图中所示得
3、容器A中,使它受到电子束轰击,失去一个电子变成正一价得分子离子。分子离子从狭缝以很小得速度进入电压为得加速电场区(初速不计),加速后,再通过狭缝s2、s3射入磁感强度为得匀强磁场,方向垂直于磁场区得界面PQ。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝得细线。若测得细线到狭缝得距离为d,试导出分子离子得质量m得表达式。解析:以m、q表示离子得质量电量,以v表示离子从狭缝s射出时得速度,由功能关系可得射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得式中为圆得半径。感光片上得细黑线到s3缝得距离2解得4、磁流体发电4、磁流体发电就就是一种新型发电方式,图1与图2就就是其工作原理示
4、意图。图1中得长方体就就是发电导管,其中空部分得长、高、宽分别为l、a、,前后两个侧面就就是绝缘体,上下两个侧面就就是电阻可略得导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图中磁场线圈产生得匀强磁场里,磁感应强度为B,方向如图所示。发电导管内有电阻率为得高温、高速电离气体沿导管向右流动,并通过专用管道导出。由于运动得电离气体受到磁场作用,产生了电动势。发电导管内电离气体流速随磁场有无而不同。设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为v0,电离气体所受摩擦阻力总与流速成正比,发电导管两端得电离气体压强差p维持恒定,求:()不存在磁场时电离气体所受得摩擦阻力F多大;
5、(2)磁流体发电机得电动势得大小;(3)磁流体发电机发电导管得输入功率P。解析:(1)不存在磁场时,由力得平衡得(2)设磁场存在时得气体流速为v,则磁流体发电机得电动势回路中得电流电流I受到得安培力设F为存在磁场时得摩擦阻力,依题意存在磁场时,由力得平衡得根据上述各式解得()磁流体发电机发电导管得输入功率由能量守恒定律得故、发电机5、图1中就就是一台发电机定子中得磁场分布图,其中、S就就是永久磁铁得两个磁极,它们得表面呈半圆柱面形状、就就是圆柱形铁芯,它与磁极得柱面共轴、磁极与铁芯之间得缝隙中形成方向沿圆柱半径、大小近似均匀得磁场,磁感强度B=0、50,图2就就是该发电机转子得示意图(虚线表示
6、定子得铁芯M)、矩形线框abc可绕过ad、c边得中点并与图1中得铁芯M共轴得固定转轴oo旋转,在旋转过程中,线框得ab、cd边始终处在图1所示得缝隙内得磁场中、已知ab边长L1=、cm,ad边长L2=10、0cm线框共有N匝导线、将发电机得输出端接入图中得装置K后,装置K能使交流电变成直流电,而不改变其电压得大小、直流电得另一个输出端与一可变电阻R相连,可变电阻得另一端P就就是直流电得正极,直流电得另一个输出端Q就就是它得负极、图3就就是可用于测量阿伏加德罗常数得装置示意图,其中、B就就是两块纯铜片,插在uS4稀溶液中,铜片与引出导线相连,引出端分别为x、y、现把直流电得正、负极与两铜片得引线
7、端相连,调节R,使uSO溶液中产生I=0、20得电流、假设发电机得内阻可忽略不计,两铜片间得电阻就就是恒定得,线圈转动得角速度=2r/s,求:(1)每匝线圈中得感应电动势得大小、(2)可变电阻与A、间电阻r之与、解析:()设线框边得速度为,则有:,一匝线圈中得感应电动势为:1=2Bl1v,代入数据解得:E=、1V(2)N匝线圈中得总感应电动势为:EN1由欧姆定律,得:=I(rR), 代入数字解得:r+R=、加速度计6、串列加速器就就是用来产生高能离子得装置,图中虚线框内为其主体得原理示意图,其中加速管得中部b处有很高得正电势U,a、c两端均有电极接地(电势为零)。现将速度很低得负一价碳离子从a
8、端输入,当离子到达b处时,可被设在b处得特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小。这些正n价碳离子从c端飞出后进入一与其速度方向垂直得、磁感强度为B得匀强磁场中,在磁场中做半径为R得圆周运动,已知碳离子得质量m=2、010-26,=7、105V,B=0、0T,n=2,基元电荷e=1、610C,求。6、电子称6、在科技活动中某同学利用自制得电子秤来称量物体得质量,如图所示为电子秤得原理图,托盘与弹簧得电阻与质量均不计。滑动变阻器得滑动端与弹簧上端连接,当托盘中没有放物体时,电压表示数为零。滑动变阻器得总电阻为R,总长度为l,电源电动势为,内阻为r,限流电阻得阻值为R0,弹簧劲度系
9、数为,不计一切摩擦与其她阻力,电压表为理想表,当长盘上放上某物体时,电压表得示数为U,求此时称量物体得质量。解析:设托盘上放上质量为m得物体时,弹簧得压缩量为,由题设知:,则由全电路欧姆定律知:,联立求解得8、喷墨打印机8、喷墨打印机得结构简图如图所示,其中墨盒可以发出墨汁微滴,此微滴经过带电室时被带上负电,带电得多少由计算机按字体笔画高低位置输入信号控制、带电后得微滴以一定得初速度进入偏转电场后,打到纸上,显示出字体、无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒、设偏转板板长为L1、6c,两板间得距离为d=、cm,偏转板得右端距纸L1=3、2cm,若一个墨汁微滴得质量为=
10、1、610kg,以0=0ms得初速度垂直于电场方向进入偏转电场,两偏转板间得电压就就是U=、0103,若墨汁微滴打到纸上得点距原射入方向得距离就就是Y=2、0、 不计空气阻力与墨汁微滴得重力,可以认为偏转电场只局限在平行板电容器内部,忽略边缘电场得不均匀性、小题1:上述墨汁微滴通过带电室带得电量就就是多少;小题2:若用()中得墨汁微滴打字,为了使纸上得字体放大1%,偏转板间电压应就就是多大。小题1:墨汁微滴在平行板运动时,由电学知识可得:U=”Ed”墨汁微滴在竖直方向得加速度:a=墨汁微滴在竖直方向得位移:y=at2墨汁微滴在平行板运动时间:Lv0t由几何学知识可得:联立可解得:、51-13小
11、题2:要使字体放大0%,则墨汁微滴打到纸上得点距原射入方向得距离应就就是、=(1+%)设此时墨汁微滴在竖直方向得位移就就是y,由几何知识可得:可解得:U=8、10(V)9、电热毯9、如图所示就就是某种型号得电热毯得电路图,电热毯接在交流电源上,通过装置p使加在电热丝上得电压得波形如图所示、此时接在电热丝两端得交流电压表得读数为( )A、10VB、156VC、2VD、31V10、速度选择器1、如图11-2所示就就是某离子速度选择器得示意图,在一半径为=10cm得圆柱形桶内有B10-4T得匀强磁场,方向平行于轴线,在圆柱桶某一直径得两端开有小孔,作为入射孔与出射孔、离子束以不同角度入射,最后有不同
12、速度得离子束射出、现有一离子源发射比荷为=101/得阳离子,粒子束中速度分布连续、当角45时,出射离子速度v得大小就就是( )A、 、C、 D、解析:由题意,离子从入射孔以5角射入匀强磁场,离子在匀强磁场中做匀速圆周运动、能够从出射孔射出得离子刚好在磁场中运动周期,由几何关系可知离子运动得轨道半径,又出射离子得速度大小为,选项B正确、11、电磁泵11、在原子反应堆中抽动液态金属或在医疗器械中抽动血液等导电液体时,由于不允许传动得机械部分与这些液体相关接触,常使用一种电磁泵,图1为这种电磁泵得结构。将导管放在磁场中,当电流穿过导电液体时,这种液体即被驱动。问:这种电磁泵得原理就就是怎样得?若导管
13、内截面积,磁场视为匀强磁场,宽度为,磁感应强度为B,液体穿过磁场区域得电流强度为,求匀强磁场区域内长度为L得导管两端形成得压强差为多少?解析:这种电磁泵得原理就就是:当电流流过液体时,液体即成为截流导体,在磁场中将受到磁场力得作用,力得方向由左手定则判定知,液体将沿图中方向流动。设驱动力形成得压强差为p,则有pS=F即pbIhB所以p=B b12、冲击电流计12、物理实验中,常用一种叫做“冲击电流计”得仪器测定通过电路得电荷量。如图所示,探测线圈与冲击电流计G串联,线圈得匝数为n,面积为S,线圈与冲击电流计组成得回路电阻为R,利用上述电路可以测量被测磁场得磁感应强度。现将线圈放在被测匀强磁场中
14、,开始时让线圈平面与磁场垂直,然后把探测线圈翻转180,此过程中,冲击电流计测出通过线圈得电荷量为q。由上述数据可知:该过程中穿过线圈平面得磁通变化量就就是_;被测磁场得磁感应强度大小为_。解析:通过冲击电流计得电荷量=t=,所以磁通变化量=qR;被测磁场得磁感应强度为,则=B(-B)=2S,=。考查磁通量、电磁感应现象,难度适中。3、示波管13、如图所示为示波管得原理图,电子枪中炽热得金属丝可以发射电子,初速度很小,可视为零。电子枪得加速电压为U,紧挨着就就是偏转电极Y与XX,设偏转电极得极板长均为,板间距离均为d,偏转电极X得右端到荧光屏得距离为。电子电量为e,质量为m(不计偏转电极与X二
15、者之间得间距)、在Y、X偏转电极上不加电压时,电子恰能打在荧光屏上坐标得原点。求:(1)若只在YY偏转电极上加电压,则电子到达荧光屏上得速度多大?(2)在第(1)问中,若再在XX偏转电板上加上,试在荧光屏上标出亮点得大致位置,并求出该点在荧光屏上坐标系中得坐标值。解:()经加速电压后电子得速度为,则有电子经过YY偏转电极得时间为侧向分速度为,则有 电子打到荧光屏上得速度等于离开偏转电极时得速度 (2)电子在YY偏转电极中得侧向位移为离开YY偏转电极后得运动时间为、侧向位移为则有 电子在y方向得位移为 同理:电子在XX偏转电极中得侧向位移为离开XX后运动时间为,侧向位移为,则有电子在x方向得位移
16、为光点在荧光屏上得坐标1、磁悬浮列车、某种超导磁悬浮列车就就是利用超导体得抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力、其推进原理可以简化为如图所示得模型:在水平面上相距b得两根平行直导轨间,有竖直方向等距离分布得方向相反得匀强磁场1与B,且B1B=B,每个磁场分布区间得长都就就是a,相间排列,所有这些磁场都以速度v向右匀速平动、这时跨在两导轨间得长为宽为得金属框MNQP(悬浮在导轨正上方)在磁场力作用下也将会向右运动、设金属框得总电阻为R,运动中所受到得阻力恒为,求:(1)列车在运动过程中金属框产生得最大电流;(2)列车能达到得最大速度;(3)简述要使列车停下可采取
17、哪些可行措施?15、电磁炉1、电磁炉专用平底锅得锅底与锅壁均由耐高温绝缘材料制成,起加热作用得就就是安装在锅底平面得一系列粗细均匀半径不同得同心导体环(导体环得分布如图所示),导体环所用材料每米得电阻值为R0,从中心向外第n个同心圆环得半径为=r0(其中1,2,3,,共有8个圆环,为已知量),如图所示。当电磁炉开启后,能产生垂直于锅底方向得变化磁场,该磁场在环状导体上产生得感应电动势规律为:e=S2snt(式中:e为瞬时感应电动势,S为环状导体所包围得圆平面得面积,为已知常数),那么,当电磁炉正常工作时,求:(1)第n个导体环中感应电流得有效值表达式;(2)前三条(靠近中心得三条)导体环释放得
18、总功率有多大?(3)假设导体环产生得热量全部以波长为得红外线光子辐射出来,那么第三条导体环上秒钟内射出得光子数就就是多少?(光速c与普朗克常数为已知量,t2/)解:(1)根据法拉第电磁感应定律:第n个环中得感应电动势最大值为:nmax=2r2第n个环得电阻为:Rn=2nR0因此第n个环中电流得最大值为:Imx=EmaxRnrn/R0因此第个环中电流得有效值为:In=rnR0(n=1,2,) (2)由:P1=与:nn2n=nP1前三个导电圆环,释放得总功率:=P1+P2P3=(13+2+33)P172r30/R0(3)设:t秒内辐射出得光子数为Nn,因为电能全部转化为光能:In2Rtnhc=vN
19、nn第三条导体环上释放得光子数:N3=1、自由电子激光器6、常见得激光器有固体激光器与气体激光器,世界上发达国家已经研究出了自由电子激光器,其原理可简单用图表示:自由电子(设初速度为零)经电场加速后,射入上下排列着许多磁铁得管中,相邻得两块磁铁得极性就就是相反得,在磁场得作用下电子扭动着前进,犹如小虫在水中游动、电子每扭动一次就会发出一个光子(不计电子发出光子后能量得损失),管子两端得反射镜使光子来回反射,结果从略为透光得一端发射出激光、若加速电压U=、8104,电子质量为m=0、10kg,电子得电量q=、61-19,每对磁极间得磁场可瞧作就就是均匀得,磁感应强度为B=91-T,每个磁极得左右
20、宽度为30m,垂直于纸面方向得长度为=60c,忽略左右磁极间得缝隙,当电子在磁极得正中间向右垂直于磁场方向射入时,电子可通过几对磁极?17、霍尔效应18、磁流体推进船18、磁流体推进船得动力来源于电流与磁场间得相互作用。图1就就是在平静海面上某实验船得示意图,磁流体推进器由磁体、电极与矩形通道(简称通道)组成。如图2所示,通道尺寸a2、0m、b、1m、0、10。工作时,在通道内沿z轴正方向加B=、得匀强磁场;沿轴负方向加匀强电场,使两金属板间得电压U=、6;海水沿y轴方向流过通道。已知海水得电阻率=、0m。()船静止时,求电源接通瞬间推进器对海水推力得大小与方向;(2)船以s=5、0m/s得速
21、度匀速前进。若以船为参照物,海水以、0m/s得速率涌入进水口,由于通道得截面积小于进水口得截面积,在通道内海水速率增加到vA8、m/s。求此时两金属板间得感应电动势US;(3)船行驶时,通道中海水两侧得电压按U=U-Us计算,海水受到电磁力得8可以转化为对船得推力。当船以vs=5、0m/s得速度匀速前进时,求海水推力得功率。解:(1)根据安培力公式,推力1=B,其中则,对海水推力得方向沿y轴正方向(向右)(2)U感=B感b=9、V(3)根据欧姆定律,安培推力F2I2Bb=72N对船得推力F=80%F576N推力得功率P=Fvs=80%Fs=28W9、静电分选器19、下图就就是某种静电分选器得原
22、理示意图。两个竖直放置得平行金属板带有等量异号电荷,形成匀强电场。分选器漏斗得出口与两板上端处于同一高度,到两板距离相等。混合在一起得a、b两种颗粒从漏斗出口下落时,种颗粒带上正电,b种颗粒带上负电。经分选电场后,a、b两种颗粒分别落到水平传送带A、B上。已知两板间距d=、1m,板得度l0、,电场仅局限在平行板之间;各颗粒所带电量大小与其质量之比均为11-C/k。设颗粒进入电场时得初速度为零,分选过程中颗粒大小及颗粒间得相互作用力不计。要求两种颗粒离开电场区域时,不接触到极板但有最大偏转量。重力加速度g取0m/s2。(1)左右两板各带何种电荷?两极板间得电压多大?()若两带电平行板得下端距传送
23、带A、B得高度H=0、3m,颗粒落至传送带时得速度大小就就是多少?(3)设颗粒每次与传带碰撞反弹时,沿竖直方向得速度大小为碰撞前竖直方向速度大小得一半。写出颗粒第次碰撞反弹高度得表达式。并求出经过多少次碰撞,颗粒反弹得高度小于0、01。20、回旋加速器20、回旋加速器就就是用来加速带电粒子得装置,图20为回旋加速器得示意图。D、D2就就是两个中空得铝制半圆形金属扁盒,在两个D形盒正中间开有一条狭缝,两个形盒接在高频交流电源上。在D盒中心A处有粒子源,产生得带正电粒子在两盒之间被电场加速后进入D盒中。两个形盒处于与盒面垂直得匀强磁场中,带电粒子在磁场力得作用下做匀速圆周运动,经过半个圆周后,再次
24、到达两盒间得狭缝,控制交流电源电压得周期,保证带电粒子经过狭缝时再次被加速。如此,粒子在做圆周运动得过程中一次一次地经过狭缝,一次一次地被加速,速度越来越大,运动半径也越来越大,最后到达D形盒得边缘,沿切线方向以最大速度被导出。已知带电粒子得电荷量为q,质量为m,加速时狭缝间电压大小恒为U,磁场得磁感应强度为B,D形盒得半径为R,狭缝之间得距离为d。设从粒子源产生得带电粒子得初速度为零,不计粒子受到得重力,求:(1)带电粒子能被加速得最大动能Ek;(2)带电粒子在D2盒中第n个半圆得半径;(3)若带电粒子束从回旋加速器输出时形成得等效电流为I,求从回旋加速器输出得带电粒子得平均功率。解:1)带电粒子在D形盒内做圆周运动,轨道半径达到最大时被引出,此时带电粒子具有最大动能Ek,设离子从D盒边缘离开时得速度为m。依据牛顿第二定律所以带电粒子能被加速得最大动能 (2分)(2)带电粒子在D2盒中第n个半圆就就是带电粒子经过窄缝被加速21次后得运动轨道,设其被加速1次后得速度为vn由动能定理得(2分)此后带电粒子在磁场中做匀速圆周运动,半径为r由牛顿第二定律得rn=()设在时间t内离开加速器得带电粒子数N,则正离子束从回旋加速器输出时形成得得等效电流,解得N带电粒子从回旋加速器输出时得平均功率=(4分)
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100