1、人教版中学七7年级下册数学期末解答题综合复习附答案一、解答题1(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由2工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)3张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片
2、,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?4如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长5求下图的方格中阴影部分正
3、方形面积与边长二、解答题6如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值7如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接
4、写出BAC的度数和此时AD与AC之间的位置关系8综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,
5、则EBC 9已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线PHAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点):如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M,A与C的数量关系10问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接
6、着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之间的数量关系并证明三、解答题11(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放
7、置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t12已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着N
8、M的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)13问题情境:如图1,ABCD,PAB=130,PCD=120,求APC的度数小明的思路是:如图2,过P作PEAB,通过平行线性质来求APC(1)按小明的思路,易求得APC的度数为 度;(2)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=试判断CPD、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系14已知射线射线CD,P为一动点,AE平分,CE平分,且A
9、E与CE相交于点E(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P运动到线段AC上时,直接写出的度数;(2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明15已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若(n为正整数),直接用含n的代数式表示四、解答题16在中,射线平分交于点,点在边上运动(不与点重合
10、),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.17己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.18阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍
11、,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,
12、在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数19(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值20如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数
13、又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、解答题1(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解
14、得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键2(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详
15、解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题3不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由
16、见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸
17、片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小4(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正解析:(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长
18、为10的算术平方根,画图【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等115=5,边长为,如图(1)(2)斜边长=,故点A表示的数为:;点A表示的相反数为:(3)能,如图拼成的正方形的面积与原面积相等1110=10,边长为考点:1作图应用与设计作图;2图形的剪拼58;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正
19、方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二、解答题6(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得
20、,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程
21、的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键7(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有A
22、CB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键8(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找
23、角的联系即可求解(3)利用(2)的结论,结合角平分线性质解析:(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质即可求解【详解】解:(1)如图1,设AM与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,ABDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,过点B作BGDM,BF平分DBC,BE
24、平分ABD,DBFCBF,DBEABE,由(2)知ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBFBFCBCF180得:233180,ABBC,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键9(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360解
25、析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,依据是平行于同一条直线的两条直线平行;所以C(CPH),所以APC(APH)+(CPH)A+C9
26、7故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQHPM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,APM+CQMA+C
27、+PMQ2MPQ+2MQP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键10(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=解析:(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=113;(2)过过作交于,推出,根据平行线的性质得出,即可得出答案;(
28、3)画出图形(分两种情况:点P在BA的延长线上,当在之间时(点不与点,重合),根据平行线的性质即可得出答案【详解】解:(1)过作,;(2),理由如下:如图3,过作交于,又;(3)当在延长线时(点不与点重合),;理由:如图4,过作交于,又,;当在之间时(点不与点,重合),理由:如图5,过作交于,又【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角三、解答题11(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与
29、反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【
30、详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD
31、旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分
32、情况讨论12(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=
33、故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键13(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求A解析:(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求APC即可;(2)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(3)画出图形,根据平行线的性质得出=
34、DPE,=CPE,即可得出答案【详解】解:(1)过点P作PEAB,ABCD,PEABCD,A+APE=180,C+CPE=180,PAB=130,PCD=120,APE=50,CPE=60,APC=APE+CPE=110故答案为110;(2)CPD=+,理由是:如图3,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE+CPE=+;(3)当P在BA延长线时,CPD=-,理由是:如图4,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=CPE-DPE =-;当P在AB延长线时,CPD=-,理由是:如图5,过P作PEAD交CD于E,AD
35、BC,ADPEBC,=DPE,=CPE,CPD=DPE -CPE =-【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键14(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;解析:(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;(2)过点作,过点作,
36、先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论;(3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论【详解】解:(1)如图,过点作,又,且点运动到线段上,平分,平分,;(2)猜想,证明如下:如图,过点作,过点作,由(1)已得:,同理可得:,;(3),证明如下:如图,过点作,过点作,由(1)已得:,即,即,即,即【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键15(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求
37、得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2),EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算能正确
38、识图,利用角的和差求得相应角的度数是解题关键四、解答题16(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=
39、GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/
40、AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100