1、人教版七7年级下册数学期末质量监测附解析一、选择题1如图图形中,1和2不是同位角的是( )ABCD2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3下列各点中,在第四象限的是( )ABCD4下列命题中,是假命题的是( )A经过一个已知点能画一条且只能画一条直线与已知直线平行B从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C在同一平面内,一条直线的垂线可以画无数条D连接直线外一点与直线上各点的所有线段中,垂线段最短5如图,直线ABCD,AECE,1125,则C等于()A35B45C50D556下列说法不正确的是( )ABC的平方
2、根是D的立方根是7如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则1的度数为( )A45B125C55D358如图,在平面直角坐标系中,把一条长为个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另一端所在位置的点的坐标是( )ABCD九、填空题9如果和互为相反数,那么_十、填空题10若与关于轴对称,则_十一、填空题11如图,AE是ABC的角平分线,ADBC于点D,若BAC=130,C=30,则DAE的度数是_.十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13将
3、一张长方形纸条折成如图的形状,已知,则_十四、填空题14一列数a1,a2,a3,an,其中a11,a2,a3,an,则a2_;a1+a2+a3+a2020_;a1a2a3a2020_十五、填空题15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_十六、填空题16如图,点A(0,1),点(2,0),点(3,2),点(5,1),按照这样的规律下去,点的坐标为 _十七、解答题17计算:(1).(2)12+(2)3 .十八、解答题18求下列各式中的x值:(1)169x2144;(2)(x2)2360.十九、解答题19完成下面推理过程,并在括号中填写推理依据:如图,ADBC于点D,
4、EGBC于点G,E3,试说明:AD平分BAC证明:ADBC,EGBCADC 90(垂直定义) EG(同位角相等,两直线平行)1 ( )23( )又3E(已知) 2 AD平分BAC 二十、解答题20如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3)点A、B分别在格点上(1)直接写出A、B两点的坐标;(2)若把DABC向上平移3个单位,再向右平移2个单位得DABC,画出DABC;(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M的坐标二十一、解答题21已知a是的整数部分,b是的小数部分(1)求a,b的值; (2)求的平方根二十二、解答题22喜欢探
5、究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)二十三、解答题23已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过
6、点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系二十四、解答题24感知如图,求的度数小乐想到了以下方法,请帮忙完成推理过程解:(1)如图,过点P作(_),_(平行于同一条直线的两直线平行),_(两直线平行,同旁内角互补),即探究如图,求的度数;应用(1)如图,在探究的条件下,的平分线和的平分线交于点G,则的度数是_(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E设,请直接写出的度数(用含的式子表示)二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小
7、明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1B解析:B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可【详解】解:选项B中1和2是由四条直线组成,1和2不是同位角故选:B【点睛
8、】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指
9、图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可【详解】解:、在同一平面
10、内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;、一条直线的垂线可以画无数条,正确,不符合题意;、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键5A【分析】过点E作EFAB,则EFCD,利用“两直线平行,内错角相等”可得出BAEAEF及CCEF,结合AEF+CEF90可得出BAE+C90,由邻补角互补可求出BAE的度数,进而可求出C的度数【详解】解:过
11、点E作EFAB,则EFCD,如图所示EFAB,BAEAEFEFCD,CCEFAECE,AEC90,即AEF+CEF90,BAE+C901125,1+BAE180,BAE18012555,C905535故选:A【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键6D【分析】利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项【详解】解:A、,正确,不符合题意;B、,正确,不符合题意;C、0.04的平方根是0.2,正确,不符合题意;D、9的立方根是=3,故错误,符合题意;故选:D【点睛】本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比
12、较简单7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8C【分析】先求出四边形ABCD的周长为10,得到201810的余数为8,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),AB1(1解析:C【分析】先求出四边形ABCD的周长为10,得到201810的余数为8,由此即可解决问题【详解】解:A(1,1),B(1,1
13、),C(1,2),D(1,2),AB1(1)2,BC1(2)3,CD1(1)2,DA1(2)3,绕四边形ABCD一周的细线长度为232310,2018102018,细线另一端在绕四边形第202圈的第8个单位长度的位置,即细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,1)故选:C【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2018个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键九、填空题9-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相反数,x+1=0
14、,y-2=0,解得:x=-1,y=2,xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案【详解】解:和|y-2|互为相反数,x+1=0,y-2=0,解得:x=-1,y=2,xy=-12=-2故答案为:-2【点睛】本题考查了绝对值和平方数的非负性互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0十、填空题10【分析】根据关于y轴对称的点的坐标特征,即可求出m的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐解析:【分析】根据关于y轴对称的点的坐标特征,即可求出m
15、的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等十一、填空题115【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,C解析:5【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,CAD=90-30=60,AE是AB
16、C的角平分线,BAC=130,CAE=BAC=130=65,DAE=CAE-CAD=65-60=5故答案为:5【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键十二、填空题1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键
17、是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14, 1 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式
18、子的值【详解】解:由题意可得,当a11时,a2,a3解析:, 1 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值【详解】解:由题意可得,当a11时,a2,a32,a41,202036731,a1+a2+a3+a2020(1+2)673+(1)673+(1),a1a2a3a2020(1)2673(1)(1)673(1)(1)(1)1,故答案为:,1【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键十五、填空题15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求
19、出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答十六、填空题16(1500,501)【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可【详解】观察图形可得,点(2,0),点(5,1),(8,2),(3n1,n1),点解析:(1500,501)【分析】仔细寻找横坐标,纵坐标与点的序号之间关
20、系,从而确定变换规律求解即可【详解】观察图形可得,点(2,0),点(5,1),(8,2),(3n1,n1),点(3,2),(6,3),(9,4),(3n,n+1),1000是偶数,且10002n,n500,(1500,501),故答案为:(1500,501)【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键十七、解答题17(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-解析:(1)0;(2)-3
21、.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8) -(-3)(- )=-1-1-1=-3故答案为(1)0;(2)-3【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键十八、解答题18(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.解析:(1)x;(2)x8或x4.【分析】(1)移项
22、后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.(2)(x2)2360,移项得:(x2)236,开方得:x-2=6或x-2=-6解得:x8或x4.故答案为(1)x;(2)x8或x4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件解析:;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【
23、分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件3E,等量代换即可的,即可证明AD平分BAC【详解】证明:ADBC,EGBCADC90(垂直定义)EG(同位角相等,两直线平行)1(两直线平等行,同位角相等)23(两直线平行,内错角相等)又3E(已知)2(等量代换)AD平分BAC(角平分线的定义)故答案是:EGC;AD;E;两直线平等行,同位角相等;两直线平行,内错角相等;1;等量代换;角平分线定义【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键二十、解答题20(1),;(2)见解析;(3)
24、【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移解析:(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标【详解】(1)根据原点的位置确定点的坐标,则,;(2)将三点向上平移3个单位,再向右平移2个单位得到,在图中描出点,连接,DABC即为所求(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横
25、坐标+2,纵坐标+3【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键二十一、解答题21(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,b解析:(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,b=;(2)=的平方根为3【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键二十二、解答题22(1);
26、(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是(2)不同意因为:两个小正方形的面积分别为和,则它们的边长分别为和,即两个正方形边长的和约为,所以,即两
27、个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念二十三、解答题23(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系
28、;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB
29、,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键二十四、解答题24感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;解析:感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根
30、据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;探究过点P作PMAB,根据ABCD,PMCD,进而根据平行线的性质即可求EPF的度数;应用(1)如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数;(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解【详解】解:感知如图,过点P作PMAB,1=AEP=40(两直线平行,内错角相等)ABCD,PMCD(平行于同一条直线的两直线平行),2+PFD=180(两直线平行,同旁内角互补),PFD=130(已知),2=180-130=50,1+2=40+50=90,即EPF=90
31、;探究如图,过点P作PMAB,MPE=AEP=50,ABCD,PMCD,PFC=MPF=120,EPF=MPF-MPE=120-50=70;应用(1)如图所示,EG是PEA的平分线,FG是PFC的平分线,AEG=AEP=25,GFC=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35故答案为:35(2)当点A在点B左侧时,如图,故点E作EFAB,则EFCD,ABE=BEF,CDE=DEF,平分平分,ABE=BEF=,CDE=D
32、EF=,BED=BEF+DEF=;当点A在点B右侧时,如图,故点E作EFAB,则EFCD,DEF=CDE,ABG=BEF,平分平分,DEF=CDE=,ABG=BEF=,BED=DEF-BEF=;综上:BED的度数为或【点睛】本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【
33、分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100